Ultraviolet Radiation: Human Exposure and Health Risks

By Tenkate, Thomas D. | Journal of Environmental Health, September 1998 | Go to article overview

Ultraviolet Radiation: Human Exposure and Health Risks


Tenkate, Thomas D., Journal of Environmental Health


Introduction

Ultraviolet radiation (UVR) is one portion of the electromagnetic radiation (EMR) spectrum. EMR consists of oscillating electric and magnetic fields that can be propagated both in free space and in matter (1). The main groupings of the EMR spectrum (in order of increasing wavelength) are as follows:

* cosmic and gamma rays,

* X-rays,

* ultraviolet radiation,

* visible radiation,

* infrared radiation,

* radar, and

* radio frequency

Ultraviolet, visible, and infrared radiation are collectively known as optical radiation because these wavelengths have effects on the eye. A number of schemes are used to divide the optical radiation section of the EMR spectrum. A frequently used photobiological scheme classifies UVR into three divisions:

1. UVC = 100 to 280 nanometers (nm),

2. UVB = 280 to 315 mm, and

3. UVA = 315 to 400 mm.

The interaction of EMR with matter takes the form of absorption, transmission, reflection, refraction, and diffraction. In most cases, one of these effects will dominate. Each effect is, however, always present to some extent (1). Energy can produce an effect within matter only when it is absorbed. When non-ionizing radiation (such as UVR) is absorbed by a molecule, either it affects the electronic energy levels of the atoms in the molecule, or it changes the rotational, vibrational, and transitional energies of the molecule. In biological systems, this energy transfer produces electron excitation, which can result in dissociation of the molecule, dissipation of the excitation energy in the form of fluorescence or phosphorescence, formation of free radicals (i.e., photochemical injury), and degradation into heat (i.e., thermal injury) (2).

Ultraviolet radiation and other forms of EMR are emitted by many sources and are primarily produced by the following processes:

* incandescence,

* electrical/gaseous discharge such as in arc welding), and

* lasers (3).

The major source of UVR at the earth's surface is the sun, which is an example of an incandescent source. The wavelengths and relative intensities of solar radiation reaching the surface of the earth are affected by a number of factors, including absorption, scattering, and reflection. Ozone, which is found in the stratosphere, has a peak concentration between an altitude of 20 and 30 kilometers (kin). Its absorption band is centered on 250 nm and extends to 350 nm. Ozone thus effectively eliminates all UVC radiation and about half of the UVB radiation from reaching the earth's surface (4). Other meteorological factors that contribute to the attenuation of UVR include the presence of cloud cover, air pollution, haze, and scattered clouds (5).

The aim of this article is to provide an overview of human exposure to UVR and the associated health effects, as well as to present risk estimates for acute and chronic conditions that may result from UVR exposure. The substantial reduction in health risk that can be achieved through preventive actions will also be demonstrated.

Health Effects

Because of the non-ionizing nature of UVR, its interaction with animals - humans in particular - is limited to the skin and eyes. The type and extent of the damage that radiation does to the eye depends on the energy absorbed, the wavelength of radiation, and the duration of exposure (6). When exposed to optical radiation, the various media of the eye act as a series of filters, each component absorbing certain wavelengths to varying degrees (7). A schematic representation of the UVR absorption characteristics of the human eye is provided in Figure 1.

The complex structure of the skin and the presence of structures such as hair follicles, sweat glands, and sebaceous glands make it difficult to determine the exact path that optical radiation travels within the tissue. The presence of optically absorbing molecules (pigments) also affects the penetration of different wavelengths in the skin. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Ultraviolet Radiation: Human Exposure and Health Risks
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.