Desperately Seeking Cures

By Begley, Sharon; Carmichael, Mary | Newsweek, May 31, 2010 | Go to article overview

Desperately Seeking Cures


Begley, Sharon, Carmichael, Mary, Newsweek


Byline: Sharon Begley and Mary Carmichael

How the road from promising scientific breakthrough to real-world remedy has become all but a dead end.

From 1996 to 1999, the U.S. food and Drug Administration approved 157 new drugs. In the comparable period a decade later--that is, from 2006 to 2009--the agency approved 74. Not among them were any cures, or even meaningfully effective treatments, for Alzheimer's disease, lung or pancreatic cancer, Parkinson's disease, Huntington's disease, or a host of other afflictions that destroy lives.

Also not among the new drugs approved was A5G27, or whatever more mellifluous name a drug company might give it. In 2004 Hynda Kleinman and her colleagues at the National Institutes of Health discovered that this molecule, called a peptide, blocks the metastasis of melanoma to the lungs and other organs, at least in lab animals. The peptide also blocks angiogenesis, the creation of blood vessels that sustain metastatic tumors, they reported six years ago in the journal Cancer Research. Unfortunately, A5G27 has not been developed beyond that discovery. Kleinman was working at NIH's dental-research institute, and, she says, "there was not a lot of support for work in cancer there at the time. They weren't interested." She did not have the expertise to develop the peptide herself. "I continued doing cancer research on it, but I couldn't take it to the next level because I'm not a cancer specialist," she says. "I was trained as a chemist."

No one is saying A5G27 would have cured metastatic cancers, which account for some 90 percent of all cancer deaths; the chance of FDA approval for a newly discovered molecule, targeting a newly discovered disease mechanism, is a dismal 0.6 percent. Diseases are complicated, and nature fights every human attempt to mess with what she has wrought. But frustration is growing with how few seemingly promising discoveries in basic biomedical science lead to something that helps patients, especially in what is supposed to be a golden age of genetics, neuroscience, and biomedical research in general.

From 1998 to 2003, the budget of the NIH--which supports such research at universities and medical centers as well as within its own labs in Bethesda, Md.--doubled, to $27 billion, and is now $31 billion. There is very little downside, for a president or Congress, in appeasing patient-advocacy groups as well as voters by supporting biomedical research. But judging by the only criterion that matters to patients and taxpayers--not how many interesting discoveries about cells or genes or synapses have been made, but how many treatments for diseases the money has bought--the return on investment to the American taxpayer has been approximately as satisfying as the AIG bailout. "Basic research is healthy in America," says John Adler, a Stanford University professor who invented the CyberKnife, a robotic device that treats cancer with precise, high doses of radiation. "But patients aren't benefiting. Our understanding of diseases is greater than ever. But academics think, 'We had three papers in Science or Nature, so that must have been [NIH] money well spent.'?"

More and more policymakers and patients are therefore asking, where are the cures? The answer is that potential cures, or at least treatments, are stuck in the chasm between a scientific discovery and the doctor's office: what's been called the valley of death.

The barriers to exploiting fundamental discoveries begin with science labs themselves. In academia and the NIH, the system of honors, grants, and tenure rewards basic discoveries (a gene for Parkinson's! a molecule that halts metastasis!), not the grunt work that turns such breakthroughs into drugs. "Colleagues tell me they're very successful getting NIH grants because their experiments are elegant and likely to yield fundamental discoveries, even if they have no prospect of producing something that helps human diseases," says cancer biologist Raymond Hohl of the University of Iowa. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Desperately Seeking Cures
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.