Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

By Carracedo-Martinez, Eduardo; Taracido, Margarita et al. | Environmental Health Perspectives, August 2010 | Go to article overview
Save to active project

Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

Carracedo-Martinez, Eduardo, Taracido, Margarita, Tobias, Aurelio, Saez, Marc, Figueiras, Adolfo, Environmental Health Perspectives

BACKGROUND: Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context.

OBJECTIVE: We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application.

DATA SOURCES AND EXTRACTION: A search was made of the MEDLINE and EMBASE databases. Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level.

DATA SYNTHESIS: The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design's application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level.

CONCLUSIONS: The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use.

KEY WORDS: air pollution, crossover studies, epidemiologic methods, health, systematic review. Environ Health Perspect 118:1173-1182 (2010). doi:10.1289/ehp.0901485 [Online 31 March 2010]


The first epidemiologic studies on the impact of air pollution on health were undertaken as a consequence of the extreme pollution episodes that took place in the decades from 1930 to 1960. The association between air pollution and certain health variables was made clear by simple graphic representations or by comparisons of mortality rates for these time periods (Firket 1931; Logan 1953). Since that time, air pollution levels have fallen substantially, such that, to evaluate their effects on health, longer time series are requited. To this end, epidemiologists began to use dynamic regression models in the 1970s that consisted of models in which the relationship between the dependent and explanatory variables were distributed over time, rather than being expected to occur simultaneously. Moreover, investigators were able to control for residual autocorrelation, with the error being specified by means of autoregressive integrated moving-average models (ARIMA). The problem with these types of models is that they assume that the dependent variable is distributed normally, which, in fact, is extremely rare in the daily outcome count variables of morbidity and mortality events (Saez et al. 1999).

The early 1990s saw the appearance of linear models based on Poisson regression, in which a parametric approach was used to control for trend and seasonality because the event counts more typically have a Poisson distribution. These models use the variable "time" and its transforms, quadratic and sinusoidal functions (sine or cosine) of different frequency and amplitude, to control for the effect on the dependent variable (mortality or morbidity) of unmeasured variables that may vary seasonally, such as in pollen concentration, meteorological variables, and influenza outbreaks, or that may have a trend, such as changes in a city's population distribution, in order to ascertain the effect of such variables on the dependent variable (Saez et al.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?