Evidence of Altered DNA Integrity in the Brain Regions of Suicidal Victims of Bipolar Depression

By Mustak, Mohammed; Hegde, Muralidhar et al. | Indian Journal of Psychiatry, July-September 2010 | Go to article overview

Evidence of Altered DNA Integrity in the Brain Regions of Suicidal Victims of Bipolar Depression


Mustak, Mohammed, Hegde, Muralidhar, Dinesh, Athira, Britton, Gabrielle, Berrocal, Ruben, Rao, K., Shamasundar, N., Rao, K. S. J., Rao, T. Sathyanarayana, Indian Journal of Psychiatry


Byline: Mohammed. Mustak, Muralidhar. Hegde, Athira. Dinesh, Gabrielle. Britton, Ruben. Berrocal, K. Rao, N. Shamasundar, K.S.J. Rao, T. Sathyanarayana Rao

Deoxyribonucleic acid (DNA) integrity plays a significant role in cell function. There are limited studies with regard to the role of DNA damage in bipolar affective disorder (BP). In the present study, we have assessed DNA integrity, conformation, and stability in the brain region of bipolar depression (BD) patients (n=10) compared to age-matched controls (n=8). Genomic DNA was isolated from 10 postmortem BD patients' brain regions (frontal cortex, Pons, medulla, thalamus, cerebellum, hypothalamus, Parietal, temporal, occipital lobe, and hippocampus) and from the age-matched control subjects. DNA from the frontal cortex, pons, medulla, and thalamus showed significantly higher number of strand breaks in BD (P <0.01) compared to the age-matched controls. However, DNA from the hippocampus region was intact and did not show any strand breaks. The stability studies also indicated that the melting temperature and ethidium bromide binding pattern were altered in the DNA of BD patients' brain regions, except in the hippocampus. The conformation studies showed B-A or secondary B-DNA conformation (instead of the normal B-DNA) in BD patients' brain regions, with the exception of the hippocampus. The levels of redox metals such as Copper (Cu) and Iron (Fe) were significantly elevated in the brain regions of the sufferers of BD, while the Zinc (Zn) level was decreased. In the hippocampus, there was no change in the Fe or Cu levels, whereas, the Zn level was elevated. There was a clear correlation between Cu and Fe levels versus strand breaks in the brain regions of the BD. To date, as far as we are aware, this is a new comprehensive database on stability and conformations of DNA in different brain regions of patients affected with BD. The biological significance of these findings is discussed here.

Introduction

Bipolar depression (BD) is one of the major psychiatric disorders characterized by recurrent depressive and manic episodes. [sup][1] BD affects about 1% of the population and causes severe neuropsychological impairments. The illness is implicated in functional impairment and represents an important risk factor for suicidal behavior. [sup][2] Twin, adoption and family studies, show that genetic factors also contribute to the etiology of this disorder. [sup][1] More recently, remarkable progress has been made in identifying the changes in the brain, related to the pathophysiology of BD. The neurochemical and brain imaging studies have demonstrated volume loss in the brain, in BD. [sup][3],[4] Studies have also shown a reduction in the numerical density of neurons in several brain regions including the anterior cingulate cortex and the hippocampus of subjects with BD. [sup][5],[6] The above-mentioned studies indicate that cell death plays a significant role in BD. Furthermore, the studies suggest that oxidative stress plays a role in the etiology of BD. [sup][7],[8],[9],[10],[11],[12]

The apoptotic cell death of neurons is hypothesized to have a role in neuropsychiatric disorders. [sup][13],[14],[15] There are limited studies indicating the presence of DNA damage in BD. [sup][11],[15],[16],[17],[18],[19] However, DNA fragmentation has also been reported with neurodegenerative disorders. [sup][20],[21],[22],[23] The aim of the current study is to assess the genomic integrity in terms of DNA fragmentation, conformation, and stability in the different brain regions of BD and to ascertain whether altered genome integrity plays a role in thepathophysiology of BD.

Materials and Methods

Materials

Radiolabeled [sup]3 [H]-TTP (Sp.Act.40Ci/nmol) was purchased from Amersham Radiochemicals, UK. Ribonuclease A (RNAse A), Proteinase k, Deoxyribonuclease I (DNAse I), dATP, dTTP, dCTP, dGTP, low melting agarose, DNA polymerase I (from E. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Evidence of Altered DNA Integrity in the Brain Regions of Suicidal Victims of Bipolar Depression
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.