A Skeptic of Quantum Theory Explains His Misgivings

By Siegfried, Tom | Science News, November 20, 2010 | Go to article overview

A Skeptic of Quantum Theory Explains His Misgivings


Siegfried, Tom, Science News


In a 1905 paper, Albert Einstein proposed that light could travel in the form of particles later called photons. It was one of the pioneering papers in the research that led to quantum mechanics, the mathematical framework for describing matter and energy on a fundamental level. But in his later years, Einstein expressed grave dissatisfaction with quantum mechanics. He was especially unhappy with its description of reality in terms of probabilities, a view developed by the German physicist Max Born. Einstein preferred the deterministic cause-and-effect rigor of classical physics, expressing his displeasure by saying "God does not play dice." But Einstein's views on quantum mechanics are often oversimplified For observable phenomena, he accepted the statistical view of quantum mechanics; his main concern was its incompleteness (in his view) in describing reality. To investigate those views, Science News Editor in Chief Tom Siegfried conducted an "interview" with Einstein via of a number of the physicist's writings and statements.

In a nutshell, what's wrong with quantum mechanics?

Some physicists, among them myself, cannot believe that we must abandon, actually and forever, the idea of direct representation of physical reality in space and time; or that we must accept the view that events in nature are analogous to a game of chance.

Why were you so upset about quantum theory when much of it was based on your own work?

Yes, I may have started it but I always regarded these ideas as temporary. I never thought that others would take them so much more seriously than I did.

Do you believe the world is totally deterministic, so each effect follows from its causes with complete predictability?

From the point of view of immediate experience there is no such thing as exact determinism.... The question is whether or not the theoretical description of nature must be deterministic. Beyond that, the question is whether or not there exists generally a conceptual image of reality (for the isolated case), an image which is in principle completely exempt from statistics.

Quantum mechanics has been extremely successful. How can you oppose a theory that always gets the right answers?

[ILLUSTRATION OMITTED]

I consider the methods of quantum mechanics fundamentally unsatisfactory.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

A Skeptic of Quantum Theory Explains His Misgivings
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.