A Tools-Based Approach to Teaching Data Mining Methods

By Jafar, Musa J. | Journal of Information Technology Education, Annual 2010 | Go to article overview

A Tools-Based Approach to Teaching Data Mining Methods


Jafar, Musa J., Journal of Information Technology Education


Introduction

Data mining is the process of discovering useful and previously unknown information and relationships in large data sets (Campos, Stengard, & Milenova, 2005; Tan, Steinbach, & Kumar, 2006). Accordingly, data mining is the purposeful use of information technology to implement algorithms from machine learning, statistics, and artificial intelligence to analyze large data sets for the purpose of decision support.

The field of data mining grew out of limitations in standard data analysis techniques (Tan et al., 2006). Advancements in machine learning, pattern recognition, and artificial intelligence algorithms coupled with computing trends (CPU power, massive storage devices, high-speed connectivity, and software academic initiatives from companies like Microsoft, Oracle, and IBM) enabled universities to bring data mining courses into their curricula (Jafar, Anderson, & Abdullat, 2008b). Accordingly, Computer Science and Information Systems programs have been aggressively introducing data mining courses into their curricula (Goharian, Grossman, & Raju, 2004; Jafar, Anderson, & Abdullat 2008a; Lenox & Cuff, 2002; Saquer, 2007).

Computer Science programs focus on the deep understanding of the mathematical aspects of data mining algorithms and their efficient implementation. They require advanced programming and data structures as prerequisites for their courses (Goharian et al., 2004; Musicant, 2006; Rahal, 2008).

Information Systems programs on the other hand, focus on the data analysis and business intelligence aspects of data mining. Students learn the theory of data mining algorithms and their applications. Then they use tools that implement the algorithms to build mining models to analyze data for the purpose of decision support. Accordingly, a first course in programming, a database management course, and a statistical data analysis course suffice as prerequisites. For Information Systems programs, a data centric, algorithm understanding and process-automation approach to data mining similar to Jafar et al. (2008a) and Campos et al. (2005) is more appropriate. A data mining course in an Information Systems program has an (1) analytical component, (2) a tools-based, hands-on component ,and (3) a rich collection of data sets.

(1) The analytical component covers the theory and practice of the lifecycle of a data mining analysis project, elementary data analysis, market basket analysis, classification and prediction (decision trees, neural networks, naive Bayes, logistic regression, etc.), cluster analysis and category detection, testing and validation of mining models, and finally the application of mining models for decision support and prediction. Textbooks from Han and Kamber (2006) and Tan et al. (2006) provide a comprehensive coverage of the terminology, theory, and algorithms of data mining.

(2) The hands-on component requires the use of tools to build projects based on the algorithms learned in the analytical component. We chose Microsoft Excel with its data mining add-in(s) as the front-end and Microsoft's Cloud Computing and SQL Server 2008 data mining computing engines as the back-end. Microsoft Excel is ubiquitous. It is a natural front-end for elementary data analysis and presentation of data. Its data mining add-in(s) are available as a free download. The add-in(s) are automatically configured to send data to Microsoft's Cloud Computing engine server. The server performs the necessary analysis and receives analysis results back into Excel to present them in tabulated and chart formats. Using wizards, the add-in(s) are easily configured to connect to a SQL Server 2008 running analysis services to send data and receive analysis results back into Excel for presentation. The add-in(s) provide a rich wizard-based, uniform graphical user interface to manage the data, the data mining models, the configurations, and the pre and post view of data and mining models. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

A Tools-Based Approach to Teaching Data Mining Methods
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.