Altered Heart Rate Variability in Spontaneously Hypertensive Rats Is Associated with Specific Particulate Matter Components in Detroit, Michigan

By Rohr, Annette C.; Kamal, Ali et al. | Environmental Health Perspectives, April 2011 | Go to article overview

Altered Heart Rate Variability in Spontaneously Hypertensive Rats Is Associated with Specific Particulate Matter Components in Detroit, Michigan


Rohr, Annette C., Kamal, Ali, Morishita, Masako, Mukherjee, Bhramar, Keeler, Gerald J., Harkema, Jack R., Wagner, James G., Environmental Health Perspectives


BACKGROUND: Exposure co fine particulate matter [aerodynamic diameter [less than or equal to] 2.5 [micro]m ([PM.sub.2.5])] is linked to adverse cardiopulmonary health effects; however, the responsible constituents are not well defined.

OBJECTIVE: We used a rat model to investigate linkages between cardiac effects of concentrated ambient particle (CAP) constituents and source factors using a unique, highly time-resolved data set.

METHODS: Spontaneously hypertensive rats inhaled Detroit Michigan, CAPs during summer or winter (2005-2006) for 13 consecutive days. Electrocardiogram data were recorded continuously, and heart rate (HR) and heart rate variability (HRV) metrics were derived. Extensive CAP characterization, including use of a Semicontinuous Elements in Aerosol Sampler (SEAS), was performed, and positive matrix factorization was applied to investigate source factors.

RESULTS: Mean CAP exposure concentrations were 518 [micro]g/[m.sup.3] and 357 [micro]g/[m.sup.3] in the summer and winter, respectively. Significant reductions in the standard deviation of the normal-to-normal intervals (SDNN) in the summer were strongly associated with cement/lime, iron/steel, and gasoline/diesel factors, whereas associations with the sludge factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAP-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary sulfate factors and most of their associated components. Specific relationships for increased root mean square of the standard deviation of successive normal-to-normal intervals (RMSSD) in winter were difficult to determine because of lack of consistency between factors and associated constituents.

CONCLUSIONS: Our results indicate that specific modulation of cardiac function in Detroit was most strongly linked to local industrial sources. Findings also highlight the need to consider both factor analytical results and component-specific results when interpreting findings.

KEY WORDS: air pollution, cardiac function, heart rate variability, particulate matter, toxicology. Environ Health Perspect 119:474-480 (2011). doi:10.1289/ehp.1002831 [Online 15 December 2010]

Numerous epidemiological and toxicological studies have reported associations between ambient fine particulate matter [aerodynamic diameter [less than or equal to] 2.5 [micro]m ([PM.sub.2.5])] and adverse cardiovascular events (e.g., Chen et al. 2010; Lanki et al. 2006). A number of these studies have documented changes in heart rate variability (HRV) (e.g., Schwartz et al. 2006). However, [PM.sub.2.5] is a complex mixture of both organic and inorganic materials, and the specific components responsible for these changes are unclear. The use of ambient particle concentrators, coupled with repeated measures and extensive exposure characterization, has facilitated identification of causative PM components. Investigators have reported linkages with water-soluble metals and organic compounds (Kodavanti et al. 2005), silicon (Si) and organic carbon (OC) (Batalha et al. 2002), vanadium (V) and bromine (Saldiva et al. 2002), and other trace elements (Gurgueira et al. 2002). Other investigators have employed factor analytical and other source apportionment methodologies co try to identify the sources of PM influencing toxicological outcomes (e.g., Chen et al. 2010); however, to date, these methods have been move widely employed in epidemiological studies (e.g., Sarnat et al. 2008).

The development of semicontinuous monitoring methodologies for elemental analysis has facilitated the identification of PM components linked with health effects. In particular, these methods allow the collection of highly time-resolved exposure measurements to correspond to continuous cardiac function data in animals. The Semicontinuous Elements in Aerosol Sampler (SEAS) (Kidwell and Ondov 2001, 2004) uses high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) to perform every-30-min multielemental analysis of [PM. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Altered Heart Rate Variability in Spontaneously Hypertensive Rats Is Associated with Specific Particulate Matter Components in Detroit, Michigan
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.