Spatio-Temporal Trends of Diarrheal Mortality of Children in Association with Hydrographic Regions of Brazil

By Leyk, Stefan; Phillips, Thomas P. et al. | Cartography and Geographic Information Science, April 2011 | Go to article overview
Save to active project

Spatio-Temporal Trends of Diarrheal Mortality of Children in Association with Hydrographic Regions of Brazil

Leyk, Stefan, Phillips, Thomas P., Smith, Jeremy M., Nuckols, John R., Cartography and Geographic Information Science


The importance of an improved understanding of environmental factors associated with enteric diseases such as diarrhea has been widely recognized and has particular relevance in spatial epidemiology (Torok et al. 1997; Kelly-Hope et al. 2007). There is strong demand to investigate dynamics of exposure to and transmission of water-borne pathogens, and to establish improved surveillance systems that can lead to effective preventive measures of such diseases (Eyles et al. 2002; Rushton 2003; Pande et al. 2008; Chaikaew et al. 2009). Such research is of particular priority in less developed regions where the burden from enteric diseases is still very high (Fewtrell et al. 2005).

An important factor in the analysis of environmental risk factors is the geographic extent and framework of the unit of analysis. Recent efforts analyzed spatio-temporal patterns of diarrhea by exploring the influence of regional dynamics of risk factors such as climate and socio-economic conditions (Kelly-Hope et al. 2008; Jepsen et al. 2004). Often the unit of analysis for such studies are administrative reporting units (states or larger) used in disease reporting, resulting in highly aggregated outcomes with limited representation of the underlying environmental phenomenon that might be more realistically reflected by analytical units defined by natural barriers, ecological systems, and other important factors in pathogen occurrence, exposure, and transmission (Curriero et al. 2001). Such disconnect can result in a higher likelihood of error due to ecological fallacy, reduce heterogeneity of observed data, and thus reduce statistical power needed to discern association between the risk factors and incidence of disease (Peters et al. 2004; Wakefield and Shaddick 2005; Beale et al. 2008).

In this article we demonstrate a geospatial framework for identifying spatio-temporal patterns of mortality peak timing from pediatric diarrhea based on relative location of the disease reporting unit in the hydrologic regime of major river basins in Brazil. Such an approach could be useful for a better understanding of the associations between waterborne diseases and environmental processes in general, thus allowing for derivation of predictive models for exposure and transmission within a natural, rather than geopolitical, spatial unit of analysis.


The geographic extent of our study area is the geopolitical boundary of Brazil. We obtained spatially registered GIS data layers of watershed boundaries and stream hydrography for eight (8) Hydrographic Regions from Agencia Nacional de Aguas (ANA; We used 1 km spatial resolution topographic data from the Shuttle Radar Topography Mission (SRTM; http://www2.jpl. to carry out hydrologic modeling.

We obtained Brazilian mortality data classified as intestinal infectious disease (ICD-9 codes) and selected all deaths of children younger than 5 years of age for the period 1979-1989 from the Ministerio da Saude do Brasil (http://www2.datasus. DATASUS/index.php?area=02). We used this time period rather than more current data because mortality rates and thus geographic heterogeneity of number of deaths were higher, allowing a more robust data set for the purpose of our study. In the dataset, monthly mortality is reported by Municipality, which is a census reporting unit of the Brazilian government with an approximate median area of 420 Km2. The number of Municipalities in Brazil changed from 3991 in 1979 to 4491 in 1989. Because of large proportions of missing data and changes of political boundaries for Municipalities over our study period, we aggregated the number of deaths per month to Census Micro Regions (CMRs) each of which contain multiple Municipalities. The number of CMRs increased from 542 in 1979 to 558 in 1989 during the study period, with a median area of 5480 Km2 in 1989. We applied screening criteria for accepting CMR-level MPT data: the presence of only one maximum value, average maximum deaths greater than 3 or if less than 3, at least 5 years of recorded data, resulting in a final dataset of 507 CMRs for use in our study, or 91% of all CMRs that reported in 1989.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Spatio-Temporal Trends of Diarrheal Mortality of Children in Association with Hydrographic Regions of Brazil


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?