Binomial Regression with Monotone Splines: A Psychometric Application

By Ramsay, J. O.; Abrahamowicz, M. | Journal of the American Statistical Association, December 1989 | Go to article overview
Save to active project

Binomial Regression with Monotone Splines: A Psychometric Application


Ramsay, J. O., Abrahamowicz, M., Journal of the American Statistical Association


1. THE BINOMIAL REGRESSION PROBLEM

Let vectors [x.sub.j] (j = 1, ..., J) be observed independent variables or covariates, and let vectors [[theta].sub.j] be associated latent variables. The data on which the estimation of a binomial regression function p is based are observations of binomial random variables [R.sub.j] (j = 1, ..., J) having the binomial distribution

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.1)

That is, the probability of a successful outcome in a single trial, given covariate [X.sub.j] and latent variable value [[theta].sub.j], is p([x.sub.j], [[theta].sub.j]), and the associated binomial observation is [r.sub.j] successes out of [n.sub.j] trials.

In the context of analyzing test data, psychometricians refer to p as the item-characteristic curve, and normally [n.sub.j] = 1 and [r.sub.j] is an indicator variable for the correct response on a test item. In this enterprise [theta] quantifies examinee ability, and is viewed either as a parameter requiring estimation along with the binary regression function p or as an incidental parameter to be eliminated eventually by marginalization or other techniques. Observed covariate x may be the total score on the test containing the item, or performance on some other tests.

The log-linear family p(z) = exp(z)/[l + exp(z)], where z = [alpha] + [beta]x, was discussed extensively by Cox (1970). The extension p(z) = [gamma] + (1 - [gamma])exp(z)/[l + exp(z)] is now used almost exclusively in psychometric modeling, where it is called the three-parameter logistic function. Parameters [alpha], [beta], and [gamma] are taken as indexes of item difficulty, discriminabihty, and probability of success by guessing, respectively. Lord (1980) provided an introduction to many applications of logistic modeling to testing problems; the field was surveyed by Lewis (1986). One can question, however, whether functions as simple as these are sufficient in a particular application. More flexible models would be desirable, if only to provide a justification for using the logistic. In fact, departures from such models are clearly visible where enough data have been available to plot p directly (Lord 1980; Wainer 1983).

This article develops some flexible tools for modeling binomial regression functions, with special attention to the psychometric problem. These techniques are illustrated in the following section by the analysis of some multiple-choice test data involving 100 items and 379 examinees. Since a typical test has many items, the result of such an analysis is many estimated binomial regression functions; the third section considers the principal-components analysis of these.

The use of monotone regression splines provides a semi-parametric approach. That is, although a small number of parameters is estimated per curve, these parameters themselves do not have an immediate interpretation. Rather, the local characteristics of the curve provide information about the relation between the item and examinees of various ability levels. A completely nonparametric approach would also be possible using smoothing splines (Hastie and Tibshirani 1986, 1987; O'Sullivan, Yandell, and Raynor 1986; Villalobos 1983), but various computational problems appear formidable. Samejima (1988) considered the nonparametric estimation of item-characteristic curves using a different approach.

The monotone regression spline technique used in this article was described in more detail in Ramsay (1982a, 1988) and Winsberg and Ramsay (1983), and involves the use of linear combinations of monotone splines [I.sub.kv] of order v (k = 1, ..., K) as a basis for functions mapping a closed real interval [A, B] into [0, 1], These authors discussed the characteristics of monotone regression splines and applied them to several problems; Winsberg, Thissen, and Wainer (1984) specifically considered the use of splines in item analysis. The approach is monotone in two senses: The basis functions used for estimating p are monotone, and if monotonicity is required of p, this can be conveniently achieved by imposing simple restrictions on the estimated parameters.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Binomial Regression with Monotone Splines: A Psychometric Application
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?