Myoelectric Forearm Prostheses: State of the Art from a User-Centered Perspective

By Peerdeman, Bart; Boere, Daphne et al. | Journal of Rehabilitation Research & Development, June 2011 | Go to article overview

Myoelectric Forearm Prostheses: State of the Art from a User-Centered Perspective


Peerdeman, Bart, Boere, Daphne, Witteveen, Heidi, Veld, Rianne Huis, Hermens, Hermie, Stramigioli, Stefano, Rietman, Hans, Veltink, Peter, Misra, Sarthak, Journal of Rehabilitation Research & Development


INTRODUCTION

The loss of a hand from amputation or congenital defects causes disability. Prostheses have been developed throughout history to restore some of the hand's original functionality and appearance. Though a variety of forearm prostheses are presently available, such as purely cosmetic hands and body-powered prostheses, modern prosthesis research is mainly focused on myoelectric (ME) prostheses [1]. A major problem for the development of new ME prostheses is that despite significant technological advancements, a large number of amputees choose not to use them [1]. The issues associated with acceptance of ME forearm prostheses have been investigated in the literature [1-3]. In these investigations, three main problems were mentioned as reasons that amputees stop using their ME prostheses: nonintuitive control, lack of sufficient feedback, and insufficient functionality. However, these studies only considered prostheses that were commercially available at the time, and their information was mostly collected through questionnaires, which offer no opportunity for discussion or patient feedback.

Recent research projects have implemented new technologies in an attempt to overcome the shortcomings outlined by Atkins et al. and others [1-3]. However, the effect of these new technologies on user acceptance is currently unknown, because most of these systems are still in the prototype stage. Though several commercial ME forearm prostheses have recently been developed [4-6] that have greater functionality than those evaluated by Atkins et al. and others [1-3], their control systems do not yet take advantage of the recent improvements in sensing, control, and feedback research.

Klopsteg and Wilson recommend a user-centered approach for improving prosthesis performance and acceptance [7]. Therefore, we investigated the state of the art in ME forearm prosthesis research by determining a set of requirements for user acceptance and using these requirements to evaluate recent technological developments.

The structure of the prosthesis should result in intuitive control to improve user acceptance. This can be accomplished by making the signal flow between the prosthesis and the user resemble that of the nondisabled body. The signal flow can be divided into three parts: user intent, motion control, and sensory feedback. A prosthesis should contain subsystems that account for each of these parts; such a desired system is shown in Figure 1. The subsystems are described as follows: electromyographic (EMG) sensing, which determines user intent by detecting the activity of residual muscles through electrodes on the skin; control system, which actuates the prosthesis according to control signals received from EMG sensing; and feedback system, which provides the user with artificial sensory information. The combination of these three subsystems gives the user a noninvasive way to control an electronic prosthesis with the residual limb.

In the "Needs Assessment Method" section, we describe the process of assessing the needs for ME forearm prostheses. A workshop with participants from various relevant fields was arranged to establish these needs. We discuss the workshop results and formulate functional requirements for user acceptance in the section "Needs Assessment Results." In the "Literature Survey" section, we investigate the state of the art in ME prosthesis research with a literature review covering the aforementioned requirements. In the "Discussion," we discuss the applicability of the needs assessment method. We then combine the results of the preceding two sections, evaluating the research state of the art using the functional requirements for user acceptance. Finally, we make recommendations for future research.

[FIGURE 1 OMITTED]

NEEDS ASSESSMENT METHOD

In this section, we describe the method used to determine user-centered needs. A workshop was organized in which the functional and nonfunctional needs of the ideal forearm prosthesis with regard to the EMG sensing, control, and feedback subsystems were discussed. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Myoelectric Forearm Prostheses: State of the Art from a User-Centered Perspective
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.