Methods to Estimate Losses Using Linear Regression Analysis: This Article Outlines How Linear Regression Analysis Can Be Used to Calculate the Allowance for Loan and Lease Losses

By Smith, Peter A. | The RMA Journal, November 2011 | Go to article overview

Methods to Estimate Losses Using Linear Regression Analysis: This Article Outlines How Linear Regression Analysis Can Be Used to Calculate the Allowance for Loan and Lease Losses


Smith, Peter A., The RMA Journal


Nature and Purpose of the Allowance for Loan and Lease Losses (ALLL) (1)

The ALLL represents one of the most significant estimates in an institution's financial statements and regulatory reports. Because of its significance, each institution has a responsibility for developing, maintaining, and documenting a comprehensive, systematic, and consistently applied process for determining the amounts of the ALLL and the provision for loan and lease losses (PLLL). To fulfill this responsibility, each institution should ensure controls are in place to consistently determine the ALLL in accordance with GAAP, the institution's stated policies and procedures, management's best judgment, and relevant supervisory guidance.

As of the end of each quarter, or more frequently if warranted, each institution must analyze the collectability of its loans and leases held for investment and maintain an ALLL at a level that is appropriate and determined in accordance with GAAP. An appropriate ALLL covers estimated credit losses on individually evaluated loans that are determined to be impaired as well as estimated credit losses inherent in the remainder of the loan and lease portfolio. The ALLL does not apply, however, to loans carried at fair value, loans held for sale, off-balancesheet credit exposures (e.g., financial instruments such as off-balance-sheet loan commitments, standby letters of credit, and guarantees), or general or unspecified business risks.

The ALLL consists of two components, Accounting Standards Codification (ASC) 450, formerly known as Financial Accounting Statement (FAS) No. 5 (Accounting for Contingencies), and ASC 310, formerly known as FAS No. 114 (Accounting by Creditors for Impairment of a Loan).

The "classified" or "bad" portfolio is analyzed for impairment on a loan level basis in accordance with ASC 310. For loans determined to be impaired, a specific loan loss reserve is calculated. For collateral-dependent loans, the reserve is typically based on the fair market value of the collateral (as-is appraised value less costs to sell); otherwise, the reserve is based on either observable market transactions or a net-present-value discounted cash flow analysis. If it is determined that a loan is impaired but there is no dollar impairment, the loan remains in the ASC 310 portion of the ALLL. If a loan is determined not to be impaired, it is migrated back to ASC 450 and included in the appropriate pool.

The purpose of the ASC 450 calculation is to estimate the dollar amount of potential losses embedded within the "unclassified" portfolio--that is, the "pass" or "good" portion of the portfolio. Loans are aggregated into homogenous pools that exhibit similar risk and performance profiles. Each pool is analyzed separately. Regulators typically require banks to use their actual annualized (pool level) historical loss data covering a two- or three-year period (preferably three) and will consider weighting different periods more than others if there is logic to support it.

To round out the analysis, banks are required to include internal and external metrics. Other than in general terms, regulators do not provide specific guidance on how to derive or apply these metrics. However, regardless of which metrics are used, they must be logical and have a causal influence on future potential losses. Moreover, the end results, when taken as a whole (ASC 450 and ASC 310), must be within regulatory guidelines.

This article specifies the use of historical data as a part of the ASC 450 calculation. It examines the analytical procedures currently in use and outlines how linear regression analysis can be used. The regression model combines historical loss data with external metrics--in this case, U.S. unemployment and FDIC loan loss data--to forecast future losses. The purpose of this article is to help banks explore the concepts described here using their own data and discuss their results with both their regulators and accountants.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Methods to Estimate Losses Using Linear Regression Analysis: This Article Outlines How Linear Regression Analysis Can Be Used to Calculate the Allowance for Loan and Lease Losses
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.