Improving Spent - Fuel Storage at Nuclear Reactors: Storing Spent Radioactive Fuel in Dry Form Rather Than in Increasingly Jammed Cooling Pools Is Much Safer, and Can He Done with Already Available Funds

By Alvarez, Robert | Issues in Science and Technology, Winter 2012 | Go to article overview

Improving Spent - Fuel Storage at Nuclear Reactors: Storing Spent Radioactive Fuel in Dry Form Rather Than in Increasingly Jammed Cooling Pools Is Much Safer, and Can He Done with Already Available Funds


Alvarez, Robert, Issues in Science and Technology


The nuclear disaster in Fukushima, Japan, which began with an earthquake in March 2011 and continues today, is casting a spotlight on nuclear reactors in the United States. At the Dai-Ichi nuclear power plant, at least one of the pools used for storing spent nuclear fuel--indeed, the pool holding the largest amount of spent fuel--has leaked and remains vulnerable. Because U.S. nuclear plants also use cooling pools for storing spent fuel, the U.S. Nuclear Regulatory Commission (NRC) formed a task force to assess what happened at the stricken facility and identify lessons for the U.S. nuclear industry. In a July 2011 report, the NRC placed upgrading the safety of storage pools at reactor stations high on its list of recommendations.

But history and scientific evidence suggest that although useful, improving pool safety will not be enough. Efforts are needed to store more spent fuel in dry form, in structures called casks that are less susceptible to damage from industrial accidents, natural disasters, or even terrorist attacks. Fortunately, money is already available to pay for this step, a situation almost unheard of in today's harsh economic climate. Now it is up to the federal government to develop policies to make this happen, for the safety of the nuclear electric industry and the nation. There is no time to wait. It is estimated that spent-fuel storage pools at U.S. reactors, which are already jammed, will hit maximum capacity by 2015.

History of delay

Since the early days of the nuclear electric industry the NRC s regulations regarding storage of spent fuel have assumed that the federal government would open in a timely fashion a permanent repository for nuclear wastes. This goal was codified in the Nuclear Waste Policy Act of 1982. Until such a facility became available, the NRC would allow plant operators to store spent fuel on a temporary basis in on-site cooling pools. However, the quest for permanent nuclear waste disposal remains illusory. As a result, nuclear plant operators are storing spent fuel in cooling pools for longer periods and at higher densities (four to five times higher, on average) than originally intended.

[ILLUSTRATION OMITTED]

As the owner of the Millstone nuclear reactor in Water-ford, Connecticut, observed in a 2001 report, neither the federal government nor utilities anticipated the need to store large amounts of spent fuel at operating sites. "Large-scale commercial reprocessing never materialized in the United States," the utility, Dominion Power, said. "As a result, operating nuclear sites were required to cope with ever-increasing amounts of irradiated fuel ... This has become a fact of life for nuclear power stations."

U.S. reactor stations have collectively produced approximately 65, 000 metric tons of spent fuel. Roughly three-quarters of the total is currently stored in pools, and the remainder is stored in dry form in casks, an inherently safer form of storage. The spent fuel stored in pools holds between 5 and 10 times more long-lived radioactivity than the reactor cores themselves hold. Because they were intended to be temporary, the pools do not have the same "defense in depth" features that the NRC requires of reactors. Even after it completed its assessment of the Fukushima disaster, the NRC has continued to allow nuclear operators to rely on cooling pools for storing spent fuel. As a result, spent-fuel pools may be destined to remain a fact of life for the indefinite future. But this possible future can and should be avoided, especially given the recent events in Japan.

Lessons from disaster

In the late afternoon of March 11, 2011, a 9.0 magnitude earthquake, followed by a 46-foot-high tsunami, struck the Dai-Ichi nuclear power site in the Fukushima Prefecture of Japan. The destruction was enormous. In a little more than an hour, offsite power was severed, backup diesel generators were rendered inoperable, and the infrastructure of wiring, pipes, and pumps necessary to maintain cooling for the four reactors and the fuel-storage pools was severely damaged. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Improving Spent - Fuel Storage at Nuclear Reactors: Storing Spent Radioactive Fuel in Dry Form Rather Than in Increasingly Jammed Cooling Pools Is Much Safer, and Can He Done with Already Available Funds
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.