The Divine Music of Mathematics: David P. Goldman Shows How Music Theory Proves What Ancient Mathematics Thought Impossible

By Goldman, David P. | First Things: A Monthly Journal of Religion and Public Life, April 2012 | Go to article overview
Save to active project

The Divine Music of Mathematics: David P. Goldman Shows How Music Theory Proves What Ancient Mathematics Thought Impossible


Goldman, David P., First Things: A Monthly Journal of Religion and Public Life


It is consoling to think that the emotions that music arouses in us have something to do with the makeup of the universe. The eternal relation of math and music has been a perennial question since Plato, from Boethius and Cassiodorus in late antiquity, through Dante's celestial harmony in Paradiso and Shakespeare's discussion in The Merchant of Venice. The deeper affinity between mathematics and music, though, is less consoling and more challenging: The modern concept of a higher-order number begins with St. Augustine's fifth-century treatise on music, and a red thread links it to Leibniz' invention of the calculus in the seventeenth.

Music employs number both in its harmonic foundation and its metrical presentation in time. But what sort of number is it? In the sixth book of his De Musica, Augustine asserted the existence of a higher order of number that in some way stands above the senses, the humeri iudiciales or "numbers of judgment" which "come from God" and enable the mind to judge what it perceives and remembers, as well as what it expects. Augustine's assertion is arresting in all three of its parts: first, that neither our sense perception nor even our memory explains how we hear music; second, that the faculty by which we judge the numbers (rhythms or harmonies) of music is also a kind of number; and third, that this higher-order number comes from God.

Championed by St. Bonaventure in the thirteenth century and embraced by Nicholas of Cusa in the fifteenth, Augustine's "numbers of judgment" point to the mathematical revolution of Newton and Leibniz in the seventeenth century. The concept of higher-order number separates the mathematics of classical antiquity from modern mathematics beginning with the calculus. Archimedes encountered solutions to individual problems in the calculus, but the idea that the integral and the differential were a new order of number that could be manipulated like any other number lay outside the boundaries of the Hellenic imagination.

Unlike the fifth-century Roman theorist Boethius, the great classical source for medieval theory, Augustine never directly discussed harmonics. His concern in De Musica was the mathematics of poetic rhythm rather than the divisions of vibrating strings. Yet the problem of higher-order numbers forced itself upon the fifteenth century through musical practice, when musicians began to alter the natural harmonic intervals to suit the requirements of the emerging tonal system.

We can dismiss these facts as happenstance. Or we can inquire as to whether the mind's perception of music does indeed tell us something fundamental about higher orders of number.

In De Musica, Augustine presents a hierarchy of rhythm that begins with "sounding numbers"--the rhythm we actually hear--followed by "memorized rhythms," that is, the mind's recognition and remembrance of a pattern. Rising above all such numbers is what Augustine calls "consideration," the numeri iudiciales. These "numbers of judgment" bridge eternity and mortal time; they are eternal in character and lie outside of rhythm itself but act as an ordering principle for all other rhythms. Only they are immortal, for the others pass away instantly as they sound, or fade gradually from our memory. They are, moreover, a gift from God, for "from where should we believe that the soul is given what is eternal and unchangeable, if not from the one, eternal, and unchangeable God?"

Book 6 of De Musica resists the usual scholarly approaches in part because it is so hard to identify precedents. Paul Ricoeur observes astutely that Augustine draws more on the Bible than on the Greeks, referring to Genesis. We might also seek Augustine's source in Ecclesiastes. For the Greeks, time is the demarcation of events. Plato understands time as an effect of celestial mechanics in Timaeus, while Aristotle in the Physics thinks of time as an attribute of movement. To Kohelet, though, time itself is an enigma; as with Augustine, it is the moment itself that remains imperceptible.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

The Divine Music of Mathematics: David P. Goldman Shows How Music Theory Proves What Ancient Mathematics Thought Impossible
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?