Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature

By Norouzi-Gheidari, Nahid; Archambault, Philippe S. et al. | Journal of Rehabilitation Research & Development, April 2012 | Go to article overview

Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature


Norouzi-Gheidari, Nahid, Archambault, Philippe S., Fung, Joyce, Journal of Rehabilitation Research & Development


INTRODUCTION

According to the World Health Organization, a stroke, also known as a cerebrovascular accident (CVA), is a sudden ischemic or hemorrhagic interruption in the blood flow supplying oxygen and nutrients to brain tissue. This event results in brain cell death and, consequently, partial loss of neurological function [1]. The occurrence of strokes has been progressively increasing. Currently, stroke is "the leading cause of adult disability in Western countries" [2] and one of the most common causes of death in the world [3]. The majority of people with stroke live with long-term disabilities leading to serious social and economic impacts. It is estimated that the direct and indirect cost of stroke care for the 6.5 million people living with the disability in the United States [4] was $73.7 billion for 2010 [5]. According to "Tracking Heart Disease and Stroke in Canada" for 2009, stroke and heart diseases cost more than $22.2 billion annually [6]. These numbers will continue to rise as the population ages and people live longer.

Depending on the magnitude and severity of the problem, people with stroke experience a variety of motor, sensory, and cognitive disabilities. A majority of patients have impaired upper-limb (UL) motor function following stroke and have difficulty in independently performing activities of daily living (ADL) [7-8]. Therefore, one of the challenging aspects of stroke rehabilitation is UL intervention. Studies have shown that only 6 to 10 percent of people with stroke who have severe paralysis achieve a full recovery by 6 months [9], and only 18 percent of them regain full UL function [10]. While the initial degree of stroke and paresis severity is a good predictor of UL function recovery [7,11-12], task-specific, high-intensity exercises in an active, functional, and highly repetitive manner over a large number of trials have been shown to enhance motor recovery, even in chronic stages of stroke [13]. Studies on the dose-response relationship in stroke rehabilitation have shown that more intensive therapy is associated with enhanced rate of motor recovery; additionally, no ceiling effect for intensity of therapy has been observed [14-16]. Despite these findings, traditional therapies are still not delivered more intensively or frequently, often because of cost and labor limitations [17]. In addition, traditional "hands-on" interventions can, at times, result in repetitive strain injuries and excessive fatigue for therapists, thus leading to possible failure in delivery of highly intensive and repetitive training [18]. Moreover, major intra- and interindividual variability exists in the application of manual therapy, leading to inconsistent outcomes.

One of the novel and rapidly expanding technologies in poststroke rehabilitation for enhancing the recovery process and facilitating the restoration of function is robot-assisted therapy (RT). Rehabilitation robotics has some advantages over conventional treatment approaches. Advanced and intelligent robotic devices are able to provide consistent training and to measure performance with high reliability and accuracy [19]. Most importantly, robots may allow patients to train more independently and with less supervision from a therapist [20].

Compared with the research and development in conventional therapy (CT) techniques, the cost, effort, and time required for the research and development in rehabilitation robotics are significantly higher. Therefore, an important element in further development of therapeutic robots and RT programs is determining whether RT is more effective than CT, based on the scientific evidence extracted from the literature. A systematic review is a rigorous methodology for gathering, synthesizing, and evaluating available scientific evidence [21]. Therefore, the main objective of this article was to systematically analyze the literature to find evidence regarding the effectiveness of RT compared with CT in improving motor recovery and functional abilities of the paretic UL of patients with stroke.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.