Weird Science: The Promise and Peril of Synthetic Biology

By Conant, Jeff | Earth Island Journal, Autumn 2012 | Go to article overview

Weird Science: The Promise and Peril of Synthetic Biology


Conant, Jeff, Earth Island Journal


IN 1971, A MICROBIOLOGIST NAMED Ananda Chakrabarty patented a bacteria genetically engineered to degrade and destroy crude oil. The next year scientists created the first synthesized gene, a bit of yeast RNA ushered into existence virtually from scratch. These discoveries, among others, raised the curtain on the science of biotechnology. Forty years later, in 2010, biologist Craig Venter, already known as a key figure behind the mapping of the human genome, announced his creation of a microbe that earned the name Synthia: "the first self-replicating species on the planet whose parent was a computer."

Between Chakrabarty's oil-eating microbe and the birth of Venter's Synthia, a wave of gene therapies, pharmaceuticals, genetically engineered crops, and manufactured biofuels have transformed science, medicine, industry, and quite possibly; global ecology.

In the second decade of the twenty-first century, genetically engineered crops account for 88 percent of the corn, 93 percent of the soy, and 94 percent of the cotton, grown in the US (by acreage). In 2011, the first commercial flight powered by algae took off from Chicago's O'Hare Airport. During the recent United Nations Earth Summit in Brazil, Amyris Inc., one of the leading companies in the emergent field of synthetic biology, flew a sugarcane-powered airplane over Rio de Janeiro. The same company, with a healthy infusion of cash from the Gates Foundation, is on the verge of releasing a malaria drug that, the company says, will be cheaper and more effective than any on the market today. The drug mimics the action of artemisia, an ancient Chinese herb. But rather than being extracted from a plant, Amyris' drug will be manufactured within the cellular membranes of a fully synthetic strain of yeast.

The eminent evolutionary biologist Stephen Jay Gould once said: "Our planet has always been in the Age of Bacteria." But scientists' rapidly accelerating ability to harness microbes and turn them into what the field of synthetic biology calls "platforms for industrial production" is entirely without precedent. We are witnessing a revolution in the biological sciences of a speed and scale that is dazzling to some, and more than a little frightening to others.

"If you want to change the world in some big way that's where you should start--biological molecules," Bill Gates told Wired magazine in 2010. The microchip revolution has transformed the globe, and men like Gates made a fortune in the process. Unlike microchips, however, microbes are alive, and the implications of tinkering with them are almost entirely unknown.

IN APRIL, THE OBAMA administration published a report called the "National Bioeconomy Blueprint" to assess and promote "economic activity fueled by research and innovation in the biological sciences." Annual revenues from the bioeconomy in 2010, the report announces, totaled $176 billion.

"The growth of today's US bio-economy," the report says, "is due in large part to three foundational technologies: Genetic engineering, DNA sequencing, and automated high-throughput manipulations of biomolecules." In a certain kind of translation, that means writing genetic code, printing it in vitro, and employing robotic assembly lines to insert it into living microbes. Translated further into simple English, it means inventing and breeding living things that have never before existed in nature.

"Whereas standard biology treats the structure and chemistry of living things as natural phenomena to be understood and explained," one definition of the technology states, "synthetic biology treats biochemical processes, molecules, and structures as raw materials and tools to be used in novel and potentially useful ways, quite independent of their natural roles. It joins the knowledge and techniques of biology with the practical principles and techniques of engineering."

Where genetic engineering inserts genes from one species into another in what many biotechnologists now call a crude, clumsy, and outdated process, the goal of synthetic biology is to create novel life forms by inserting computer-generated DNA sequences into living cells, and then propagating them.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Weird Science: The Promise and Peril of Synthetic Biology
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.