The Paradox of Energy Efficiency: Why Greener Technology Doesn't Translate into Reduced Energy Consumption

By Bailey, Ronald | Reason, November 2012 | Go to article overview

The Paradox of Energy Efficiency: Why Greener Technology Doesn't Translate into Reduced Energy Consumption


Bailey, Ronald, Reason


AUTOMOBILE manufacturers have been working for decades on improving fuel efficiency. So why aren't the cars we drive today getting dramatically better gas mileage? Underlying that question is a fascinating paradox about energy consumption.

A study by MIT economist Christopher Knittel in the December 2011 issue of the American Economic Review found that since 1980 the average fuel economy of American vehicles has increased only slightly, from 23 miles per gallon to 27. Yet Knittel found that fuel efficiency--the amount of power an engine produces per gallon of fuel burned--increased by 60 percent during that period. What's going on here? Cars and trucks have become bigger and more powerful: The average weight of passenger vehicles has increased 26 percent since 1980, while their horsepower has risen by 107 percent. Most of the gains in fuel efficiency have gone into compensating for the extra size and thrust.

Automobiles are not the only category in which greater efficiency has failed to translate into reduced energy consumption. Lighting efficiency has improved during the last three centuries by many thousand-fold, from sputtering candies to modern LEDs, as Jeff Tsao and his colleagues from the Sandia National Laboratory note in the July 2012 issue of the journal Energy Policy. But the result "has been an increase in demand for energy used for lighting that nearly exactly offsets the efficiency gains." The authors note that "when lighting becomes cheaper, economic agents become very creative in devising new ways to use it," such as illuminating office ceilings with LED virtual skies. In coming decades, Tsao et al. predict, increased demand for lighting probably will again swallow up any new gains in energy efficiency.

In another recent study, reported in the July 2012 issue of the journal Sustainability, Graham Palmer, technical director of an Australian heating and cooling company, looked at trends in space heating efficiency during the last 50 years in Melbourne. Modern houses are up to 10 times more energy efficient, Palmer found, yet Australians are collectively using just as much energy to heat their homes as they did a half-century ago. Why? New houses are much bigger, people heat larger areas for longer, and fewer people live in each dwelling. Of course, modern Australians are much more comfortable in the winter than their grandparents were.

Similarly, a 2006 study commissioned by the U.S. Environmental Protection Agency found that homes in Phoenix, Arizona, that qualify for the EPA's Energy Star designation use 12 percent more energy than homes that don't. Owners of Energy Star houses may use 16 percent less energy per square foot to keep their indoors livable, but they spend those gains on bigger houses.

This energy "rebound effect" has important implications for efforts to restrain climate change through conservation. Various studies have suggested that improvements in efficiency could reduce energy consumption enough to cut global carbon dioxide emissions by as much as 25 percent during the next four decades. But this is a highly controversial area of scholarship.

In a 2007 Science article, Princeton University researchers Robert Socolow and Stephen Pacala calculated that seven "stabilization wedges" could prevent global carbon dioxide atmospheric concentration from rising to more than twice its pre-industrial level by 2050. "Improvements in efficiency and conservation probably offer the greatest potential to provide wedges" they argued. One wedge (equaling one-seventh of the necessary reduction) could be achieved either by doubling the miles-per-gallon performance of the planet's projected 2 billion automobiles or by cutting in half the distance they travel each year. Another wedge, they said, could be achieved by boosting the efficiency of coal-burning electricity plants from 40 percent to 60 percent. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Paradox of Energy Efficiency: Why Greener Technology Doesn't Translate into Reduced Energy Consumption
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.