Distributed Problem Solving

By Yeoh, William; Yokoo, Makoto | AI Magazine, Fall 2012 | Go to article overview

Distributed Problem Solving


Yeoh, William, Yokoo, Makoto, AI Magazine


Broadly, distributed problem solving is a subfield within multiagent systems, where the focus is to enable multiple agents to work together to solve a problem. These agents are often assumed to be cooperative, that is, they are part of a team or they are self-interested but incentives or disincentives have been applied such that the individual agent rewards are aligned with the team reward.

We illustrate the motivations for distributed problem solving with an example. Imagine a decentralized channel-allocation problem in a wireless local area network (WLAN), where each access point (agent) in the WLAN needs to allocate itself a channel to broadcast such that no two access points with overlapping broadcast regions (neighboring agents) are allocated the same channel to avoid interference. Figure 1 shows example mobile WLAN access points, where each access point is a Create robot fitted with a wireless CenGen radio card. Figure 2a shows an illustration of such a problem with three access points in a WLAN, where each oval ring represents the broadcast region of an access point.

This problem can, in principle, be solved with a centralized approach by having each and every agent transmit all the relevant information, that is, the set of possible channels that the agent can allocate itself and its set of neighboring agents, to a centralized server. However, this centralized approach may incur unnecessary communication cost compared to a distributed approach. For example, agents in the centralized approach need to send information to a centralized server, which can be many hops away in the WLAN. On the other hand, agents in a distributed approach need only send information to their neighboring agents, which are one hop away. Additionally, a distributed approach can also take advantage of parallelism to solve the problem faster. For example, if the WLAN is composed of two disjoint networks, then the two problems can be solved in parallel in a distributed approach but must be solved in sequence in a centralized approach. A distributed approach also removes single points of failure, such as the centralized server, which increases robustness.

[FIGURE 1 OMITTED]

Although there are many distributed problem-solving models, we focus our scope in this article on distributed constraint-reasoning (DCR) models such as distributed constraint-satisfaction problems (DCSPs) (1) and distributed constraint-optimization problems (DCOPs). The DCR models have a rich history and have been used to model a wide variety of distributed problems including the distributed scheduling of jobs in a job shop (Sycara et al. 1991), the distributed scheduling of meetings (Maheswaran et al. 2004; Zivan 2008), the distributed allocation of targets to sensors in a network (Zhang et al. 2003; Zivan, Glinton, and Sycara 2009), the distributed allocation of resources in disaster evacuation scenarios (Lass et al. 2008), the distributed management of power distribution networks (Kumar, Faltings, and Petcu 2009), the distributed generation of coalition structures (Ueda, Iwasaki, and Yokoo 2010), and the distributed coordination of logistics operations (Leaute and Faltings 2011).

A DCSP or DCOP can be visualized as a graph, where nodes are agents and edges are constraints that represent interactions between neighboring agents. If we model the decentralized channel allocation problem as a DCSP, then a constraint is unsatisfied if the two agents sharing that constraint choose the same channel. The constraint is satisfied otherwise. The goal in a DCSP is to find an allocation of channels to all agents such that all constraints are satisfied. If we model the problem as a DCOP, then a constraint incurs a cost of infinity if the two agents sharing that constraint choose the same channel. The constraint incurs a finite cost otherwise. Each pair of nonconflicting channels typically has a different cost to reflect the channel preferences.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Distributed Problem Solving
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.