Same Greenhouse Gas 3 Different Stories: How Lifecycle Analysis Reveals More Ways to Reduce Emissions

By Torrie, Ralph | Alternatives Journal, January-February 2013 | Go to article overview

Same Greenhouse Gas 3 Different Stories: How Lifecycle Analysis Reveals More Ways to Reduce Emissions


Torrie, Ralph, Alternatives Journal


Barry Commoner, the great American environmentalist and communicator summed up the universe of sustainable living and design in his four laws of ecology:

1. Everything is connected to everything else.

2. Everything must go somewhere.

3. Nature knows best.

4. There is no such thing as a free lunch.

"LIFECYCLE ANALYSIS (LCA) helps us apply Commoner's laws of ecology, giving us a framework to think about how things are connected. An effective response to climate change will require rich countries like Canada to reduce their greenhouse gas (GHG) emissions by 80 per cent or more. That will mean at least quadrupling the carbon-free share of our fuel and electricity supplies, and the efficiency with which we use them.

If ever there was a challenge that required careful, methodical thinking about how things are connected, this is it.

Lifecycle analysis can uncover the connections between GHG emissions and the myriad decisions and behaviours of individuals, households and companies that ultimately drive those emissions. What are the emission impacts of using high-efficiency appliances and lighting? Of telecommuting and teleshopping? Of waste reduction and recycling? Of green buildings? Lifecycle analysis can reframe the challenge of reducing GHG emissions, opening up more potential routes to a low-carbon energy system.

LCA is ideally suited to the problem of GHG reduction because global warming impacts don't depend on where emissions take place, or on complicated pathway analyses. A tonne of greenhouse gas emissions has the same climate impact no matter where it's produced in the lifecycle of a fossil fuel. The source could be a tar sands facility in Alberta, a vehicle tailpipe in Toronto's rush hour, a gas plant in Saskatchewan or a furnace chimney in a Nova Scotia home. The level and pattern of fuel and electricity usage have emissions impacts that can be traced all the way back to the beginning of the lifecycle, and LCA helps us understand the connections that will lead to lower emissions, or even eliminate them.

Plotting a Low-Carbon Future

THE DATA ASSEMBLED here comes from Trottier Energy Futures Project (TEFP), which is designed to engage with Canadians and gain a better understanding of how energy technologies, policy decisions and day-to-day practices could contribute to a low-carbon future. The results of these conversations will be integrated with the Canadian Energy System Simulator (CanESS), the quantitative model used for mapping an 80 per cent reduction In Canadas energy-related GHG emissions (based on a 1990 baseline) by 2050. The TEFP has identified a series of 11 challenge areas that touch all sectors of the economy, and solutions in each area will eventually be fed back into the model. trottierenergyfutures.ca

Point of Emissions Allocation

Conventionally, GHGs are assigned at the paint of emissions, the physical location in the sector and province where the electricity is generated or the fuel Is extracted. The resulting distribution pattern is a familiar one, and has become the most common framework for thinking about where Canada's emissions come from.

By sector, the energy Industry dominates, with fossil fuel and electric power production responsible for half of Canada's GHG emissions. This scenario reinforces the need for emission reduction policies that put the onus on oil and gas producers and electric power generators. This certainly has some utility, but the biggest, most cost-effective opportunities to reduce GHG emissions can actually be found where energy is used, not where It is produced.

For example, using electricity more efficiently in homes and offices reduces the amount of power that must be generated In the first place. Likewise, limiting automobile travel and using fuel efficient cars and transit will cut tailpipe emissions, as well as reduce emissions along the supply chain from the oil field to the filling station. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Same Greenhouse Gas 3 Different Stories: How Lifecycle Analysis Reveals More Ways to Reduce Emissions
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.