Forecasting OMX Vilnius Stock Index-A Neural Network approach/OMX Vilnius Akciju Indekso Prognozavimas Naudojant Dirbtinius Neuronu Tinklus

By Dzikevicius, Audrius; Stabuzyte, Neringa | Business: Theory and Practice, December 2012 | Go to article overview

Forecasting OMX Vilnius Stock Index-A Neural Network approach/OMX Vilnius Akciju Indekso Prognozavimas Naudojant Dirbtinius Neuronu Tinklus


Dzikevicius, Audrius, Stabuzyte, Neringa, Business: Theory and Practice


1. Introduction

Stock market prediction brings a lot of discussion between academia. First of all negotiations arise whether future prices can be forecasted or not. One of the first theories against ability to forecast the market is Efficient Market Theory (EMH). It states that current prices "fully" reflect all available information so there is no possibility to earn any excess profit (Fama 1970). Another important statement was made several years later announcing, that stocks take a random and unpredictable path, stock prices have the same distribution and are independent from each other, so past movement cannot be used to predict the future (Malkiel 1973). This idea stands for Random Walk Theory. According to these statements no one investor could profit from the market without additional unpublicized information or undertaking additional risk. But these theories are facing critics and negotiations that during the time prices are maintaining some trends so it is possible to outperform the market by implementing appropriate forecasting models and strategies.

Researchers provide many models for stock market forecasting. They include various fundamental and technical analysis techniques. Fundamental analysis involves evaluating all the economy as a whole, analyzing exogenous macroeconomic variables, the root is based on expectation. On the contrary, technical analysis is using historical data, such as price and volume variables, preprocessing this data mathematically and making future forecasts rooted in statistics.

Financial time series forecasting brings a lot of challenges because of its chaotic, difficult, unpredictable and nonlinear nature. The most traditional methods are made under assumption that relation between stock price and certain variables is linear. There is evidence that these techniques, such as moving average, do not have acceptable accuracy (Dzikevicius et al. 2010). Most popular linear dependencies are simple moving averages, exponential moving averages and linear regression.

One of the newest approaches to forecast dynamic stock market nature is looking for non-linear techniques such as artificial neural networks (ANN). These methods, inspired by human brain, have an ability to find non-linear patterns, to learn from past and generalize. Neural networks are widely used in physical sciences but the popularity is rising in the financial field as well. The main research paper target is to evaluate the neural network ability to forecast stock market behavior by implementing a multi-layer perceptron (MLP) model to predict stock market index OMX Vilnius (OMXV) future movements (actual value and direction of the index). The model's accuracy is compared with several traditional linear models (moving average and linear regression).

The organization of this paper is as follows. The second section provides a brief review of previous researches, the third parts describes data and chosen methodology, the fourth part presents empirical results. The last section provides a brief summary and conclusions.

2. Literature review

The born year of neural network method can be called the year 1958, when the first neural network structure was defined. It was called perceptron (Rosenblatt 1958). Another important date is the year 1986. The authors introduced the 'back-propagation' learning algorithm that still nowadays is the most popular and will be discussed in a more detailed way in the next section (Rumelhart et al. 1986).

Nowadays modern ANN use of field is really wide: it includes biological, physical science, industry, finance, etc. There are four main reasons of such increasing popularity of use (Zhang et al. 1998). First of them is that oppositely from the other traditional methods ANN have very few assump tions, because they are learning from examples and capturing functional relationships. The second advantage is generalization --the ability to find the unseen part of population from a noisy data.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Forecasting OMX Vilnius Stock Index-A Neural Network approach/OMX Vilnius Akciju Indekso Prognozavimas Naudojant Dirbtinius Neuronu Tinklus
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.