Poststructuralism and Deconstruction: A Mathematical History

By Tasic, Vladimir | Cosmos and History: The Journal of Natural and Social Philosophy, January 2012 | Go to article overview

Poststructuralism and Deconstruction: A Mathematical History


Tasic, Vladimir, Cosmos and History: The Journal of Natural and Social Philosophy


Examples are not lacking of philosophers whose outlook was inspired or in some way influenced by thinking about the meaning of mathematics: Wittgenstein, Husserl, Russell, before them Peirce, and more recently Badiou, to name only the clearest cases in point. Philosopher and mathematical logician Jean Cavailles was undoubtedly influential on post-war philosophy in France, and the effects of his mathematical critique of the philosophy of the subject, especially of Kant and Husserl, carried an important impulse from formalist mathematics to twentieth-century French philosophy. Even Heidegger, although critical of formal logic and technical reason (like some mathematicians of his day), followed the debate on the nature of mathematical knowledge and may have been provoked by it--especially by the controversy regarding the time-continuum--to attempt in his Being and Time (1927) to "destroy" traditional metaphysics and thus transgress the philosophical options that found themselves at loggerheads over the question of the foundations of mathematics.

The link works in the other direction, too, although it has become something of a rarity to find mathematical articles that contain references to Kant, Fichte, Schopenhauer and Nietzsche. During the foundational debate in the 1920s, one could see this in the articles of Hermann Weyl and L.E.J. Brouwer; Weyl was actively interested in phenomenology and maintained correspondence with Husserl, while Kurt Godel is known to have been a serious reader of Kant and Husserl. Much earlier, Hermann Grassmann (a major influence on Alfred North Whitehead) had built on the ideas of his father, Justus Grassmann, who wrote under the influence of Schelling.(1) These links have not been severed, even if they remain unstated. Thus, for example, the philosophically reticent Bourbaki collective was, according one of its members, a "brainchild of German philosophy". One finds the influence of Husserl and Heidegger in the mathematical essays of Gian-Carlo Rota, and at least implicitly in the work of Petr Vopenka on alternative set theory. It may not be the norm, but examples of cross-fertilization are not as difficult to find as the oversimplified binarism of "two cultures" would have us believe.

My goal here is to indicate the relevance of mathematics to several important points made by Jacques Derrida. A number of Derrida's arguments bear resemblance to critiques of logic and excesses of formalist mathematics. These objections hark back to the ideas of "intuitionist" mathematicians who--some, I think, under the influence of German romantic idealism--rebelled in the early 1900s against the hegemony of formal logic and the symbolic reduction of all thought to computation. The situation is not quite that simple, since Derrida apparently also employs certain ideas of formalist mathematics in his critique of idealist metaphysics: for example, he is on record saying that "the effective progress of mathematical notation goes along with the deconstruction of metaphysics."(2)

Derrida's position can, I think, be interpreted as a sublation of two completely opposed schools in mathematical philosophy. For this reason it is not possible to reduce it to a readily available philosophy of mathematics. One could perhaps say that Derrida continues and critically reworks Heidegger's attempt to "deconstruct" traditional metaphysics, and that his method is more "mathematical" than Heidegger's because he has at his disposal the entire pseudo-mathematical tradition of structuralist thought. He has implied in an interview given to Julia Kristeva that mathematics could be used to challenge "logocentric theology," and hence it does not seem unreasonable to try looking for mathematical analogies in his philosophy.

A word of caution, though. The similarities I will outline here are similarities of argumentative techniques, not of philosophical outlooks. The analogies--which are informed and limited by my own interpretive ability and my belief that mathematics and continental philosophy are deeply related--are not to be confused with the gross misstatement that "mathematicians have done it all. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Poststructuralism and Deconstruction: A Mathematical History
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.