Obesity Is Mediated by Differential Aryl Hydrocarbon Receptor Signaling in Mice Fed a Western Diet

By Kerley-Hamilton, Joanna S.; Trask, Heidi W. et al. | Environmental Health Perspectives, September 2012 | Go to article overview

Obesity Is Mediated by Differential Aryl Hydrocarbon Receptor Signaling in Mice Fed a Western Diet


Kerley-Hamilton, Joanna S., Trask, Heidi W., Ridley, Christian J. A., DuFour, Eric, Ringelberg, Carol S., Nurinova, Nilufer, Wong, Diandra, Moodie, Karen L., Shipman, Samantha L., Moore, Jason H., Korc, Murray, Shworak, Nicholas W., Tomlinson, Craig R., Environmental Health Perspectives


BACKGROUND: Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes.

OBJECTIVES: The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants.

METHODS: We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet.

RESULTS: The Western diet differentially affected body size, body fat: body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects.

CONCLUSIONS: The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.

KEY WORDS: aryl hydrocarbon receptor, gene-environment interaction, liver, mRNA, miRNA, obesity, Western diet. Environ Health Perspect 120:1252-1259 (2012). http://dx.doi.org/10.1289/ehp.1205003 [Online 18 May 2012]

It has been estimated that 25-70% of the underlying basis for obesity is gene based (Cardon et al. 1994; Stunkard et al. 1986); thus, environmental factors are a major contributor with 30-75% (Baillie-Hamilton 2002). One of the accepted environmental causes for the worldwide rise in obesity and associated problems is the increased consumption of the high-calorie, high-fat, low-fiber Western diet. A biological entity that tightly links genes and the environment is a nuclear receptor best known for its role in xenobiotic metabolism: the aryl hydrocarbon receptor (AHR). AHR is a ligandactivated nuclear receptor/transcription factor that regulates genes involved in toxicant metabolism and provides a major defense to environmental exposures. AHR signaling is also involved in a number of essential nonxenobiotic biological and developmental pathways (Fernandez-Salguero et al. 1995). Upon ligand binding, the AHR translocates to the nucleus, where it complexes with the AHR nuclear translocator (ARNT). The AHR/ARNT heterodimer regulates the transcription of genes in the cytochrome P450 Cyp1 family, some phase II detoxification genes, and thousands of other genes (Trask et al. 2009), including the gene expression of other nuclear receptors relevant to obesity [e.g., Ppara (peroxisome proliferator - activated receptor-[alpha])] (Wang et al. 2011). The AHR is also activated by dietary components such as fats and fat derivatives (McMillan and Bradfield 2007), and there is evidence linking the activated AHR to major diseases, including obesity (La Merrill et al. 2009).

Although several studies have examined the relationship between the AHR and fat metabolism using a model system comparing functional AHR signaling to one that is AHR deficient, none have examined the consequences resulting from different levels of AHR signaling activity. To identify a possible role for the AHR in obesity, we used two mouse models that differ at the Ahr gene (Figure 1A). The two strains were C57BL/6 (B6 strain), which naturally bears the high-affinity AHR encoded by the [Ahr.sup.b1] allele, and the congenic C57BL/6.D2 (B6.D2 strain), which bears the low-affinity AHR encoded by the [Ahr.sup.d] allele naturally found in the DBA/2 mouse strain. The two Ahr alleles encode AHRs that differ by approximately 10-fold in ligand binding affinity, as well as gene induction and gene expression levels, including that of the Cyp1a1 and Cyp1b1 xenobiotic genes (Thomas et al.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Obesity Is Mediated by Differential Aryl Hydrocarbon Receptor Signaling in Mice Fed a Western Diet
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.