Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research

By Anderson, G. Brooke; Bell, Michelle L. et al. | Environmental Health Perspectives, October 2013 | Go to article overview

Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research


Anderson, G. Brooke, Bell, Michelle L., Peng, Roger D., Environmental Health Perspectives


Introduction

Research that addresses health effects of weather-related heat exposure is critical both to limit present-day dangers from heat and also to prepare for future weather. Heat waves can produce catastrophic death tolls, including > 14,000 excess deaths during the 2003 French heat wave (Hemon et al. 2003), as well as increased risk of hospitalizations and adverse birth outcomes (e.g., Anderson et al. 2013; Basu et al. 2010). Under climate change, heat waves are expected to be more frequent and severe (Meehl and Tebaldi 2004). Beyond heat-health research, numerous other environmental health studies assess exposure to outdoor heat as a potential confounder (e.g., research on air pollution and health).

To estimate heat exposure, many environmental health studies use indices meant to capture the combined experience of several weather factors, such as the Universal Thermal Climate Index (UTCI 2012) and the humidex, which is used by Canada's weather office (Environment Canada 2013). One of the most popular indices for environmental health research is Steadman's apparent temperature (Steadman 1979a, 1979b, 1984), a version of which provides the basis for heat advisories in many U.S. communities [National Oceanic and Atmospheric Administration (NOAA) 2009]. Steadman's apparent temperature translates current weather conditions (air temperature and air moisture in the most basic formulations) into the air temperature that would "feel" the same to humans if dew point temperature were 14.0[degrees]C/57.2[degrees]F (Rothfusz 1990; Steadman 1979a). By expressing weather conditions in terms of the equivalent temperature if dew point temperature were 14[degrees]C, Steadman translated combinations of air moisture and temperature [and other factors such as wind speed and sun radiation, in his original papers (Steadman 1979a, 1979b)] into a single scale, measured in the same units as air temperature. This index, particularly the simplified version that relies only on air temperature and moisture (Steadman 1979a), is often also called the "heat index" [here, we use "apparent temperature" to describe values originally presented in the tables by Steadman (1979a), whereas we use "heat index" to describe values generated by algorithms approximating Steadman's original apparent temperature values (Ahrens 2007)].

Apparent temperature was developed to measure thermal comfort rather than to study human health (Steadman 1994). However, it has become a popular exposure metric in environmental health, particularly in its approximated "heat index" form. The U.S. National Weather Service (NWS) has linked different heat index values to environmental health threats [e.g., a heat index of 40.6[degrees]C/105[degrees]F indicates "danger" of heat-related disorders (NOAA 2012)], and the NWS uses heat index for its excessive heat warnings (NOAA 2009). Additionally, the heat index is widely used in environmental health research, including studies of air pollution exposures (e.g., Zanobetti and Schwartz 2005), outdoor temperature exposures (e.g., Barnett et al. 2010; Fletcher et al. 2012), and development of synoptic-scale heat warning systems (Sheridan and Kalkstein 2004; Smoyer-Tomic and Rainham 2001). The heat index has been used as a measure of heat exposure in studies throughout the world, including in studies of the United States (e.g., Zanobetti and Schwartz 2006), cities throughout Europe (e.g., Michelozzi et al. 2009), Australia (Khalaj et al. 2010), Bangladesh (Burkart et al. 2011), South Korea (Kysely and Kim 2009), and several Central and South American cities (Bell et al. 2008).

Calculating apparent temperature using Steadman's original equations requires iterating multiple equations that describe heat and moisture transfer until a final equation converges (Steadman 1979a). Steadman performed this calculation for specific combinations of air temperature and moisture (relative humidity or dew point temperature).

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.