Plutonium, Nuclear Power, and Nuclear Weapons

By Wagner, Richard, Jr.; Arthur, Edward D. et al. | Issues in Science and Technology, Spring 1999 | Go to article overview

Plutonium, Nuclear Power, and Nuclear Weapons


Wagner, Richard, Jr., Arthur, Edward D., Cunningham, Paul T., Issues in Science and Technology


A new fuel cycle architecture for nuclear power would expand its potential to contribute to the future global energy economy and reduce its potential nuclear weapon proliferation risks.

Although nuclear power generates a significant portion of the electricity consumed in the United States and several other major industrial nations without producing any air pollution or greenhouse gases, its future is a matter of debate. Even though increased use of nuclear power could help meet the energy needs of developing economies, alleviate some pressing environmental problems, and provide insurance against disruption of fossil fuel supplies, prospects for the expansion of nuclear power are clouded by problems inherent in some of its current technologies and practices as well as by public perception of its risks. One example is what to do with the nuclear waste remaining after electricity generation. The discharged fuel that remains is highly radioactive and contains plutonium, which can be used to generate electricity or to produce nuclear weapons. In unsettled geopolitical circumstances, incentives for nuclear weapons proliferation could rise and spread, and the nuclear power fuel cycle could become a tempting source of plutonium for weapons. At the moment, the perceived risks of nuclear power are outweighing the prospective benefits.

One reason for the impasse in nuclear development is that proponents and critics both appear to assume that nuclear technologies, practices, and institutions will over the long term continue to look much as they do today. In contrast, we propose a new nuclear fuel cycle architecture that consumes plutonium in a "once-through" process. Use of this architecture could extract much of the energy value of the plutonium in discharged fuel, reduce the proliferation risks of the nuclear power fuel cycle, and substantially ease final disposition of residual radioactive waste.

The current problem

Most of the world's 400-plus nuclear power reactors use lightly enriched uranium fuel. After it is partially fissioned to produce energy, the used fuel discharged from the reactor contains plutonium and other long-lived and highly radioactive isotopes. Early in the nuclear era, recovering the substantial energy value remaining in the discharged fuel seemed essential to fulfilling the promise of nuclear energy as an essentially unlimited energy source. A leading proposal was to separate the plutonium and reprocess it into new fuel for reactors that in turn would create, through "breeding," even more plutonium fuel. This would extend the world's resources of fissionable fuel almost indefinitely. The remaining high-level radioactive waste - stripped of plutonium and uranium - would be permanently isolated in geologic repositories. It was widely assumed that this "closed cycle" architecture would be implemented everywhere.

In 1977, the United States abandoned this plan for two reasons. Reduced projections of demand for nuclear power indicated no need to reprocess plutonium into new fuel for a long time to come, and it was feared that if the closed cycle were widely implemented, the separated plutonium could be stolen or diverted for use in nuclear weapons. Instead, the United States adopted a "once-through" or "open cycle" architecture: discharged fuel, including its plutonium and uranium, would be sent directly to permanent geologic repositories. As the world leader in nuclear power production, the United States urged other nations to adopt the same plan. Sweden and some other countries eventually did, but most countries still plan, or retain the option, to reprocess spent fuel.

Current practices, whether open or closed cycle, lead to continuing accumulation of discharged fuel, which is often stored at the reactor sites and rarely placed in geologic isolation or reprocessed to recover plutonium. This accumulation has occurred in the United States because development of a permanent repository has been long delayed.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Plutonium, Nuclear Power, and Nuclear Weapons
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.