Enthusiastic Voices from YOUNG MATHEMATICIANS

By Steele, Diana F. | Teaching Children Mathematics, March 2000 | Go to article overview
Save to active project

Enthusiastic Voices from YOUNG MATHEMATICIANS

Steele, Diana F., Teaching Children Mathematics

Students should value mathematics in their lives and become confident in their abilities to solve problems, learn to reason, and communicate their mathematical ideas (NCTM 1989). Using these mathematical skills gives students school experiences that come close to the experiences of mathematicians. Such experiences help students learn what it means to know mathematics as a discipline as they actively construct their own knowledge and develop mathematical concepts.

To find out how children think like mathematicians, I observed several elementary classrooms as a teacher and researcher (Steele 1995). I became very interested in one particular fourth-grade classroom. The students in this classroom exhibited characteristics of what mathematicians do when they discover new mathematical ideas. These students made conjectures and presented their points of view to convince others of their validity. They saw patterns and relationships emerge as they made sense of mathematical situations. They reflected on their thinking, speculated about mathematical ideas, and drew logical conclusions. The students examined and justified solutions to problems and extended their thinking into higher levels to generalize their solutions to new problems. This article describes how these fourth graders thought like mathematicians and illustrates their thinking through classroom vignettes.

Clarifying Questions and Representing Ideas

The first vignette shows students explaining their mathematical ideas and using visual representations to help others understand their thinking. Hal seeks to clarify the question that the teacher has asked. Interpreting what the problem is asking is an important attribute of the work of a mathematician. Mathematicians clarify questions and restate problems in their own words. Only after understanding what they are looking for can they begin to answer the question.

Teacher. Can more than one circle have the same center? Raise your hand if you think that more than one circle can have the same center. It looks like we have about half and half.

Hal. Can I ask you one thing? If it's like a circle that goes around and has a point in the middle--can every one that goes around have the same middle of the circle? [He uses his hands to show one circle oriented vertically and one oriented horizontally.]

Even though Hal has trouble forming his question, he demonstrates clearly with his hands that he is talking about circles in two planes.

Teacher. That's an excellent question, and I didn't think that anybody was going to ask that. I think what he is basically asking ... is what if he has circles like this ...? [Teacher draws fig. 1].

To make sure that she and others understand Hal's question, the teacher helps him illustrate his thinking; however, she is not satisfied with her sketch. Instead, she uses two rubber bands, looped around fingers on each hand and overlaps the rubber bands.

Teacher. Right, Hal? And the center is in the middle of it. What he is wanting to know is, What if [we] have circles that go like this?

Hal agrees that the teacher is illustrating his idea. Some students initially disagree that this idea, two circles in different planes, could be possible. In the end, the teacher and students accept Hal's idea because the question does not state that the circles must be in the same plane. Through discussing Hal's question, the students move beyond the assumption that their circles must lie in the same plane. Mathematicians know through experience that they must not make unfounded assumptions when solving a problem.

In the following excerpt, we can see that Hal believes that his thinking has value. We can also see that Hal's idea opens up the discussion.

Teacher. Hal has thought of an example of two circles that do have the same center. One circle is headed in this direction in one plane and one, in this direction in a different plane.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Enthusiastic Voices from YOUNG MATHEMATICIANS


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?