The Design of a Visual Display for the Presentation of Statistical Quality Control Information to Operators on the Plant Floor

By D'Souza, Melroy E.; Greenstein, Joel S. | Human Factors, December 1999 | Go to article overview
Save to active project

The Design of a Visual Display for the Presentation of Statistical Quality Control Information to Operators on the Plant Floor

D'Souza, Melroy E., Greenstein, Joel S., Human Factors

We applied human-centered design methodologies to enhance the presentation of product quality information to operators on a manufacturing plant floor. First, an initial visual display concept that integrated a pictorial representation of a product with standard graphical and tabular information about the product's quality was refined through iterative design and testing. A preliminary study was then conducted to determine the specific features of such a display (termed a pictorial control chart) from among eight candidate detail designs. Finally, a formal study was conducted to compare the performance of operators using this refined pictorial control chart design with their performance using a conventional control chart. Operators completed a quality control task in significantly less time using the pictorial control chart. There were no significant differences in the number of errors committed with the two charts. Subjective measures showed a significant preference for the pictorial control chart. Actual or potential applications of this research include the development of quality control tools that are useful to and usable by operators on the manufacturing plant floor.


Quality has been defined as "fitness for use" (Juran & Gryna, 1980). To make a product fit for use in a world of complex products, markets, and competition, quality control must focus on preventing defects rather than on responding to them. X-bar and R control charts (also called variable control charts) are tools used in industry to prevent defects. They allow for the control of one variable per piece, per chart and are used when data are continuous (Charbonneau & Webster, 1978). Continuous data include measures of a dimension, a weight, an output, a hardness, and a tensile strength.

A typical X-bar and R control chart is shown in Figure 1; it is a graphical display of a quality characteristic (the outer diameter of a bearing) that has been computed from a sample of three bearings versus the sample number or time. X-bar represents the average outer diameter of the bearings for each sample, and R, the range of the sample, is the difference between the largest and smallest observations in the sample. The X-bar and R control charts contain center lines that represent the average value and average range, respectively, of the quality characteristic when the manufacturing process is in statistical control.

Two other horizontal lines, called the upper control limit (UCL) and the lower control limit (LCL), are shown in each chart. These control limits are determined such that if the process is in control, nearly all of the sample points will fall within them. A point that is outside the control limits is interpreted as a signal or evidence that the process is out of control. This case requires investigation and corrective action to find and eliminate the cause of this behavior (Montgomery, 1991).

Although the term control chart has been universally accepted and used, the chart does not actually control anything. It simply provides a basis for action and is effective only if those responsible for making decisions act on the information that the chart reveals (Charbonneau & Webster, 1978). As decision-making responsibility shifts to those closest to the production of the product, these workers on the plant floor must construct, analyze, and act on the information provided by the control chart. However, a number of companies eager to implement statistical quality control (SQC) on the plant floor have been frustrated by the fact that apparent deficiencies in reading, writing, and arithmetic skills among a significant proportion of their employees inhibit their workers' ability to be trained (Lewis & Kales, 1991; Mast, 1988). Statistical methods must be presented in a simple, straightforward, nonthreatening manner and must be demonstrated to be a practical and helpful tool in the workplace.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

The Design of a Visual Display for the Presentation of Statistical Quality Control Information to Operators on the Plant Floor


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?