Go with the Flow: An Updated Tool for Detecting Molecules

By Frazer, Lance | Environmental Health Perspectives, September 2000 | Go to article overview

Go with the Flow: An Updated Tool for Detecting Molecules


Frazer, Lance, Environmental Health Perspectives


To date, some 4,000 species of bacteria have been identified, 200 of which are pathogenic to humans. Some are a double-edged sword--in the case of Escherichia coli, for example, some strains exist as benign and beneficial occupants of the human intestinal system, and others cause potentially life-threatening illnesses. In the event of a bacterial disease outbreak, it's vital for public health officials to know which strain they're dealing with as quickly as possible to be able to track the outbreak's source and limit its extent. (Similar knowledge at the clinical level, usually obtained through a process known as culture and sensitivity, allows for selection of appropriate antibiotics for treatment, as many bacterial strains have developed a resistance to some antibiotics.)

A recent analytical advancement at Los Alamos National Laboratory in New Mexico may have a great influence on rapid bacterial strain identification. A group of Los Alamos scientists led by Richard Keller, Babetta Marrone, and James Jett has built upon earlier flow cytometry technology to create a device that allows public health officials and others to study bacteria at the molecular level, differentiating between individual strains more quickly and with greater accuracy than was possible before.

In the original flow cytometer, developed at Los Alamos in the early 1970s, the substance being tested is broken down into individual cells, and each cell passes individually in a continuous flow through a laser beam, scattering the light in a characteristic manner. Dyes bound to different parts of the cell emit light, or fluoresce, when passed through the laser.

Sensors within the cytometer measure several parameters, including "low-angle forward scatter intensity," which is approximately proportional to cell diameter, and fluorescence intensities at several wavelengths, which allows for the study of cell components such as total DNA per cell, specific nucleotide sequences, and, by labeling with monoclonal antibodies, specific cellular proteins and other molecules. Flow cytometers are now common in hospitals and public health labs across the country.

A few years ago, the Los Alamos group began refining the capabilities of the flow cytometer so that it could analyze not just a single cell but a single molecule. This development makes the term "cytometer" somewhat of a misnomer, as the new device deals with molecules rather than cells.

Flow Chart

"Single molecule detection is the Holy Grail of analytical chemistry," Jett says. "In addition to instrumental developments, one of the things that helped us ... was the creation of a whole new family of DNA-binding dyes that showed a tremendous leap in fluorescence when they bonded with DNA."

The Los Alamos group has used several different nucleic acid stains, including PicoGreen, POPO-3, and TOTO-1, all of which show a 600-fold or larger enhancement in fluorescence when they bind to DNA. But even with the increased fluorescence, relatively little light is emitted when the individual molecules pass through the laser beam. So the group slowed the flow rate from 10 meters per second to 10 millimeters per second, keeping the fragments and the dye bound to them in the light source for a longer period so more photons could be emitted, collected, and measured using a solid-state photon-counting detector.

As stained DNA fragments are run through the flow cytometer, they trigger brief bursts of fluorescence. The size of the burst is directly proportional to the number of dye molecules that bind to the DNA and thus reveals the size of the DNA fragment as measured in base pairs. These bursts are recorded, producing a histogram, a DNA "fingerprint," which is exactly analogous to the electrophoretogram produced by gel electrophoresis. In that technique, DNA-containing samples are purified, then treated with enzymes that cut the DNA at specific points, creating a collection of "clippings" that is characteristic of the organism that produced it. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Go with the Flow: An Updated Tool for Detecting Molecules
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.