The Use of Brain Electrophysiology Techniques to Study Language: A Basic Guide for the Beginning Consumer of Electrophysiology Information

By Molfese, Dennis L.; Molfese, Victoria J. et al. | Learning Disability Quarterly, Summer 2001 | Go to article overview

The Use of Brain Electrophysiology Techniques to Study Language: A Basic Guide for the Beginning Consumer of Electrophysiology Information


Molfese, Dennis L., Molfese, Victoria J., Kelly, Spencer, Learning Disability Quarterly


Abstract. This article provides a basic background for the professional who is interested in utilizing event-related potential (ERP) approaches to study language processes but has little background in or knowledge about the technique. First, a brief history of the emergence of this technology is presented, followed by definitions, a theoretical overview, and a practical guide to conducting ERP studies. The basis for choice of electrode positions, equipment characteristics (e.g., filter settings), and analyses are also discussed. Finally, examples of language studies that utilize this information in a research study are provided.

There has been a long-standing interest by researchers and theorists in brain-behavior relations. This interest has led to the development and adaptation of instruments and methodologies that measure the brain's responses for use in studying developmental issues. Techniques such as electroencephalography (EEG), event-related potentials (ERP), and brainstem-evoked response (BSER) all share a common approach to cortical electrophysiology -- scalp electrodes are used to detect electrical activity generated by the brain. These techniques can provide insights into brain-behavior developmental issues that complement and supplement information obtained through more traditional behavioral measures.

This article reviews the history of cortical electro-physiological approaches to investigate brain-behavior relations. An overview of the procedure is provided along with rationales for various components of it. We briefly also comment on how these approaches compare to other techniques, such as Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and functional Magnetic Resonance Imaging (fMRI). A final section will describe the current use of ERP techniques in longitudinal research to investigate the relation between brain functioning in infancy and subsequent cognitive and language development in school-aged children, with a focus on reading and reading disability.

What Are Event-Related Potentials?

In order to understand ERPs (event-related potentials) or Eps (evoked potentials) some general background on the electroencephalography or EEG is useful. In the general EEG (electroencephalogram) technique, electrodes attached to the scalp allow physicians to measure the brain's electrical activity or EEG. The idea behind EEG is straightforward. The human body utilizes electricity in its operation, somewhat like cable cars, computers, and CD players use electricity. One major source and processing station of that electricity is the brain, or more specifically, the neurons that make up much of what we call the brain. Every time a group of neurons perform some function, they generate a small amount of electrical energy, which spreads throughout the brain to other neurons. However, a portion of this electrical signal passes through the brain and travels through the skull where it can be measured on the scalp. By positioning electrodes on the scalp's surface, EEG amplifiers magnify the minute electrical discharges (perhaps 5-10 [micro]V, or millionths of a volt) that occur. Such electrical currents on the scalp thus reflect and indicate the activity level of groups of neurons within the brain. The end result is a readout of the ongoing electrical discharges (in the form of continuous brain waves) that were produced during activity (e.g., sleeping, listening to music, reading) over some period of time.

An EEG field at the scalp can only be recorded if large numbers of neurons are active at the same time, and they must all be aligned in the same orientation. If they are not aligned, that is, they are laminar, then the positive and negative fields of differently aligned neurons tend to cancel each other out. Subcortical brain structures, such as the basal ganglia, may be highly active electrically, but do not appear to contribute to the scalp EEG because they are not aligned with cortical brain structures. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Use of Brain Electrophysiology Techniques to Study Language: A Basic Guide for the Beginning Consumer of Electrophysiology Information
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.