The Bias of the RSR Estimator and the Accuracy of Some Alternatives

By Goetzmann, William N.; Peng, Liang | Real Estate Economics, Spring 2002 | Go to article overview

The Bias of the RSR Estimator and the Accuracy of Some Alternatives


Goetzmann, William N., Peng, Liang, Real Estate Economics


William N. Goetzmann (*)

Liang Peng (**)

This paper analyzes the implications of cross-sectional heteroskedasticity in the repeat sales regression (RSR). RSR estimators are essentially geometric averages of individual asset returns because of the logarithmic transformation of price relatives. We show that the cross-sectional variance of asset returns affects the magnitude of the bias in the average return estimate for each period, while reducing the bias for the surrounding periods. It is not easy to use an approximation method to correct the bias problem. We suggest an unbiased maximum likelihood alternative to the RSR that directly estimates index returns, which we term MLRSR. The unbiased MLRSR estimators are analogous to the RSR estimators but are arithmetic averages of individual asset returns. Simulations show that these estimators are robust to time-varying cross-sectional variance and that the MLRSR may be more accurate than RSR and some alternative methods.

The repeat sales regression (RSR), first described by Bailey, Muth and Nourse (1963), is widely used to infer returns of equal-weighted portfolios of assets through time. (1) Most applications of RSR have been in the area of home price index estimation. Indeed, local home indices constructed with the RSR are becoming the benchmarks for home appraisal--the RSR allows a web-based home price estimate that can be used for quick home mortgage assessment and approval. Although it is now becoming a pervasive tool for credit analysis, the RSR has some well-known econometric flaws. (2) One well-known problem of RSR estimators is that they are biased downwards from actual portfolio returns.

This is obviously not desirable because the most common use of any index may be to estimate the current value of its underlying portfolio or of an asset in the portfolio. While equal-weighted portfolios of assets have returns that are arithmetic averages of cross-sectional individual asset returns, the repeat sales estimators are essentially cross-sectional geometric averages. Because of Jensen's inequality, the logarithmic transformation of the price relatives used as a dependent variable in the repeat sales regression results in a bias--the RSR averages logs rather than takes a log of an average. Thus, after getting rid of the log, the RSR estimators are geometric averages instead of arithmetic averages.

Three methods have been suggested to address the bias problem. Shiller (1991) proposes arithmetic-average price estimators for equal-weighted and value-weighted portfolios. The estimators are analogous to the RSR estimators and easy to calculate. Goetzmann (1992) proposes a method that approximates the arithmetic means given RSR estimators, under the assumption that asset returns in each period are lognormally distributed and the cross-sectional variance is constant over time. In another attempt toward unbiased estimators, Geltner and Goetzmann (2000) propose a nonlinear method that minimizes the sum of squared residuals directly without taking logs first.

Though the bias problem of RSR is well known, its source and magnitude may not be well understood. In this paper, we interpret RSR estimators as sample statistics and show how they are simultaneously determined in the regression and how they actually mimic cross-sectional geometric sample means. Specifically, we interpret each RSR estimator as a geometric average of proxies of individual single-period asset returns. As a result, we are able to explicitly decompose the bias of RSR estimators into two components and study them separately.

Our analysis shows that the two components of the bias are respectively determined by two different impacts of the logarithmic transformation of the price relatives: the direct impact and the serial impact. These two impacts push RSR coefficients in opposite directions. Specifically, the direct impact makes RSR coefficients biased downwards, while the serial impact biases them upwards. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Bias of the RSR Estimator and the Accuracy of Some Alternatives
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.