Using Classification and Regression Trees (CART) to Support Worker Decision Making

By Johnson, Michelle A.; Brown, C. Hendricks et al. | Social Work Research, March 2002 | Go to article overview
Save to active project

Using Classification and Regression Trees (CART) to Support Worker Decision Making


Johnson, Michelle A., Brown, C. Hendricks, Wells, Susan J., Social Work Research


Several approaches can be taken to predict case membership in the classes of a dependent variable. Classification and regression trees (CART) analysis has been cited repeatedly as a powerful nonparametric approach in fields where classification or prediction are of concern. To test CART's utility in a social work setting, the authors conducted a secondary analysis of data collected in a national study of child protective services screening practices to identify factors involved with worker decisions to investigate child maltreatment reports. The CART analysis revealed complex interaction effects previously unobserved in the logistic regression. Comparisons of CART with traditional statistical approaches and other tree-based programs are presented.

Key words: classification and regression trees; decision trees; decision making; screening; child protective services

**********

Depending on the research question, the basic purpose of a classification study is either to produce an accurate classifier or to uncover the predictive structure of the phenomenon under consideration (Breiman, Friedman, Olshen, & Stone, 1984). For most social work professionals, both objectives are of interest; for example, to target resources, a program planner must be able to identify groups of clients that are likely to benefit from a specific approach and to understand the factors that predict the likelihood of success given the client's presenting conditions. Similarly, when a social worker recommends care alternatives, prediction of outcome given the client's condition, available resources, and the factors expected to influence rehabilitation are necessary to appropriately assist the client and family in their decision making. Yet, many social work professionals are faced with complex decision problems without the benefit of a set of rules to organize data. In these situations, most decision makers tend to polarize around only a few variables, potentially missing important aspects of a problem.

Although a variety of traditional statistical approaches can be used to predict the classification of cases from complex data sets, classification and regression trees (CART) analysis (Breiman et al., 1984) has been cited repeatedly as a powerful nonparametric approach in applied fields where classification or prediction are of concern, such as medicine (for example, Goldman et al., 1998; Mair, Smidt, Lechleitner, Dienstl, & Puschendorf, 1998; Thomssen et al., 1998) and mental health (Barnes, Welte, & Dintcheff, 1991; Boerstler & de Figueiredo, 1991; Craig, Siegel, Hopper, Lin, & Sartorius, 1997). For example, in a study of low-income psychiatric patients, Boerstler and de Figueiredo found the client's discharge from inpatient treatment at the most recent admission to psychiatric treatment to be "the most consistent, most powerful, and the only necessary predictor of high use of outpatient psychiatric services" (p. 32); an important implication for program administrators. Mair et al. (1995) used CART to develop an algorithm for use in emergency room settings for the early diagnosis of heart attack based on clinical symptoms, ECG, and other myocardial measures from 114 patients. The method's ability to predict a diagnosis was as high as that of other statistical methods; however, CART's graphical features, essential for use in clinical training and practice, were cited as a primary advantage over other methods.

To demonstrate CART's potential for use in social work settings, this article presents the CART technique, its utility in identifying factors involved with decisions to investigate reports of child maitreatment, and comparisons of CART with traditional statistical approaches and other tree-based software programs.

BACKGROUND

In response to the growing discrepancy between the number of reports made to child protective services (CPS) and the number of reports investigated, the Children's Bureau funded an on-site study of CPS screening practices in 12 communities from five states to illustrate worker decision-making practices at intake (Wells, Fluke, Downing, & Brown, 1989).

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Using Classification and Regression Trees (CART) to Support Worker Decision Making
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?