Science & Technology: There's Life on the Edge ; Tiny Organisms Exist in the Most Extreme Environments, and They May Help Us Generate Power and Clean Up Pollution. Simon Hadlington Reports

By Hadlington, Simon | The Independent (London, England), May 12, 2004 | Go to article overview
Save to active project

Science & Technology: There's Life on the Edge ; Tiny Organisms Exist in the Most Extreme Environments, and They May Help Us Generate Power and Clean Up Pollution. Simon Hadlington Reports


Hadlington, Simon, The Independent (London, England)


In Phillip Wright's laboratory, there is a large silver cabinet resembling a fashionable fridge. Inside, rows of fluorescent light tubes shine down on ranks of conical flasks containing a bright green, murky fluid. It looks like something Fungus the Bogeyman might enjoy for supper. In fact, this green soup could one day be at the forefront of a new energy economy. Feed it industrial waste, and it can produce hydrogen.

The flasks contain cultures of an organism called a cyanobacterium. It was isolated from a lake in Libya with an exceptionally high concentration of salt. Most organisms would simply pickle in such a powerful brine. This one thrives.

This cyanobacterium is an example of an "extremophile", an organism that is capable of surviving on the margins of what is biologically feasible. Micro-organisms can be found living in sub- zero conditions in Antarctic lakes, or in hot vents in the seabed, under huge pressures and in temperatures exceeding 100C. They can be found in arid, parched regions of the Sahara desert - and, like Professor Wright's cyanobacterium, in lakes where the water is saturated with salt.

Wright, of the Department of Chemical and Process Engineering at the University of Sheffield, wants to find out if the unusual properties of extremophiles can be harnessed for a range of useful purposes, from cleaning up pollution and generating fuels to producing new drugs.

The cyanobacterium, called Euhalothece, was isolated from salt lakes on the fringes of the Sahara. In these lakes, the concentration of salt is many times that found in sea water.

These cyanobacteria contain chlorophyll - the same green pigment that other plants use to produce food from the energy of the Sun. However, a by-product of their growth is hydrogen. "We have found that as well as being tolerant of very high concentrations of salt, these organisms can also grow in high levels of other chemicals, such as oil and other substances that are often present in contaminated sites," Wright says. "So we are looking at whether it is possible to take waste material and feed it to cultures of this type of organism to produce hydrogen gas, a commercially useful by- product. Can we make hydrogen from such a system on an industrial scale? This is potentially very attractive - the main input is sunlight, but we get something useful out of it."

Across the room from the cabinet, Wright slides up the glass panel of a fume cupboard to reveal a gently steaming water-bath. Submerged in the water are half a dozen glass flasks, long necks protruding above the surface.

The flasks contain cultures of an organism called Sulfolobus, growing happily on a diet of concentrated alcohol and salt at a temperature of 80C. "These microbes live naturally in hot springs, and this particular batch was isolated from hot sulphurous pools around the Bay of Naples," Wright says. "We are testing them to see how they grow on a range of different alcohols of increasing concentration. They can also grow in pretty acidic conditions."

In the chemical and pharmaceutical industries, many processes take place at high temperatures and in solvents such as alcohols and ketones (acetone, often used as nail-polish remover, is a ketone). Most micro-organisms cannot tolerate such heat, and prefer to grow in water-based environments. This makes it difficult to integrate microbes into many processes - even though they can carry out important chemical reactions very efficiently. Microbes that can withstand heat - "thermophiles" or "hyperthermophiles" - could be useful in these circumstances.

"There is also the issue of infection by other bugs," Wright says. "By carrying out fermentations at high temperatures and in concentrated solvents such as alcohol, you effectively have a selectively sterile environment. This could be important for the production of pharmaceuticals or in the food processing industry.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Science & Technology: There's Life on the Edge ; Tiny Organisms Exist in the Most Extreme Environments, and They May Help Us Generate Power and Clean Up Pollution. Simon Hadlington Reports
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?