Ancient Art of Origami Shapes High-Tech Gizmos

By Krishnan, Sonia | The Christian Science Monitor, September 17, 2003 | Go to article overview

Ancient Art of Origami Shapes High-Tech Gizmos


Krishnan, Sonia, The Christian Science Monitor


When Taketoshi Nojima envisions the future, he pictures it in collapsible terms.

The Kyoto University scientist imagines people lounging on foldable furniture and living in houses that compress rather than crumble during an earthquake.

His inspiration springs from an unlikely source - origami.

Long regarded as a children's hobby, the Japanese folk art - which creates delicate objects from intricately folded squares of paper - is riding a wave of newfound enthusiasm from scientists, mathematicians, and engineers around the country and, increasingly, across the globe.

Researchers have tapped into the craft's abundant hidden rules, angles, and limits, poising them to revolutionize the design and function of everything from water bottles to the "crumple zones" of cars.

"Origami theory can be used for anything," says Mr. Nojima, one of the country's leading experts in the field. "Because origami is everywhere."

Nojima is applying principles of the ancient art to design more energy-efficient satellites. In the United States, Robert Lang, a former NASA researcher and origami master, drew on his knowledge of the form to create a software program, called TreeMaker, that scientists at Lawrence Livermore Laboratory in California used in designing a more portable telescope that unfolds like a flower.

And Ichiro Hagiwara, a Japanese scientist, is rethinking the way cars absorb energy in a crash in light of origami's fold lines.

From folding maps to folding cars

Evidence of origamic applications is everywhere: Maps, airbags, tents, instant food packaging, and domed stadium roofs are just some examples of products that utilize the mathematical elements of the traditional craft.

Unlike many bulky and esoteric theorems, scientists say that origami's mathematical beauty lies in its simplicity. The folded lines merge to create a poetic, seamless geometry.

While the math behind origami's industrial purposes borrows from the spirit of its conventional counterpart, one key difference exists - three-dimensional properties. Though an origami crane may appear 3-D, it's actually 2-D because it's created from a single plane.

Engineers say by using 3-D origami, solar panels can readily expand in space and plastic beverage bottles can collapse like an accordion under reverse, twisted pressure.

The benefit of 3-D origami is that "there is good stability in one direction and very weak resistance in another direction," says Arzu Gonenc Sorguc, a visiting professor at the Tokyo Institute of Technology from the department of architecture at Middle East Technical University in Ankara, Turkey.

Some scientists propose that this characteristic - which makes a structure withstand various external and internal forces - can even save lives. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Ancient Art of Origami Shapes High-Tech Gizmos
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.