For Physicists, There Is Life after the Supercollider Experiments Now Try to Re-Create the Big Bang, Probe Nature of Subparticles, and Study Solar Emissions

By Robert C. Cowen, writer of The Christian Science Monitor | The Christian Science Monitor, April 25, 1995 | Go to article overview

For Physicists, There Is Life after the Supercollider Experiments Now Try to Re-Create the Big Bang, Probe Nature of Subparticles, and Study Solar Emissions


Robert C. Cowen, writer of The Christian Science Monitor, The Christian Science Monitor


ALTHOUGH physicists were disappointed when the United States Congress canceled their supercollider dream machine, they now have other challenging frontiers.

Take, for example, the research typified by Piyare L. Jain's quest to explore the origin of the universe. Working at the State University of New York at Buffalo, Dr Jain recently reported major progress. "We are approaching the point where we will be able to re-create the Big Bang in the laboratory," he says.

Or consider the efforts of an international team working with Germany's DESY particle-physics laboratory, which will fire up a new experiment next month to probe deeply into the inner structure of atomic building blocks: the proton and neutron that make up an atom's nucleus. Among other matters, it should shed new light on how protons and neutrons -- the so-called nucleons -- get their spin. That's an abstract property that helps determine how the larger material world is structured.

Physicists who had planned to work with the supercollider haven't given up hope either. A new, albeit less powerful, accelerator that member nations have agreed to build at the European Center for Particle Physics (CERN) in Geneva may yet achieve the supercollider's main goal of finding out why matter has mass. American physicists are expecting Congress to decide later this year whether to put up money to allow them to join the CERN project. As physicist John Hauptman of Iowa State University at Ames puts it: "We may live in exciting times yet."

The physicists' continuing hope in the face of disappointment arises from the fact that they aren't interested in machinery for its own sake. They want to elucidate matter's structure. That means expanding their understanding of the basic particles that constitute matter and of the forces that govern them. And that means delving, by any methods available, ever deeper into the weird world of things that are very small.

In what physicists call the current standard theory, the matter particles consist of six quarks; three types of electrons; and three massless, electrically uncharged particles called neutrinos. Protons and neutrons that make up atomic nuclei are themselves composed of two types of quarks, called up and down. The other quarks only appear fleetingly in high-energy particle experiments.

All of the matter particles interact through forces carried by yet other particles. The photon, for example, carries the electromagnetic force. Protons and neutrons are bound together by a so-called strong force. This force is carried by particles that physicists whimsically call gluons.

The world of these particles is weird because, when you are dealing with entities as small as atoms or smaller, things don't happen the way they do in our familiar larger scale world. For example, they obey an uncertainty rule that says the more precisely you pin down the time interval when something happens, the less certain you can be of the amount of energy involved. And the conservation-of-energy law that says energy can't be created or destroyed doesn't hold within that brief time period. So what physicists call "virtual" versions of the basic particles can be created using energy that isn't accounted for, provided the particles disappear quickly enough to satisfy the uncertainty rule. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

For Physicists, There Is Life after the Supercollider Experiments Now Try to Re-Create the Big Bang, Probe Nature of Subparticles, and Study Solar Emissions
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.