Science: It's Always a Fluid Situation

By Wolpert, Lewis | The Independent (London, England), October 19, 2001 | Go to article overview
Save to active project

Science: It's Always a Fluid Situation

Wolpert, Lewis, The Independent (London, England)

EVERY TWO weeks a 500-page journal covering the field of fluid mechanics lands on Keith Moffatt's desk. He has, for the past five years, been the director of the Isaac Newton Institute for Mathematical Sciences in Cambridge. Here, mathematical discussions are apparently ceaseless and must be seen to be happening, as there are blackboards everywhere, not only in the lift but in the toilets of both sexes. Mathematical problems, Moffatt assured me, will go on forever, new ones arising as the old ones are solved.

But why on earth, I wondered, should a mathematician such as he is care about something that sounds as old-fashioned as fluid mechanics? How wrong I was. The movement of fluids - which unlike solids are infinitely deformable - plays a central role in all our lives and presents some very difficult mathematical and physical problems.

While Leonardo da Vinci made some wonderful drawings of water showing eddies and turbulence, these were observations without theory. It was in the 18th century that Leonhard Euler, with undoubted genius, first derived the equations of fluid motion that predicted, for instance, how fast water should flow from a vessel of a given depth. But there was something seriously wrong with his idealised equations - they ignored viscosity, or internal friction. Then in 1824, Claude Navier, a Frenchman, and Sir George Stokes, an Irishman, put viscosity into their equations and thus laid the cornerstone of all modern fluid dynamics.

The flow of fluids dominates our lives. The Earth's atmosphere is a huge gaseous fluid whose motion is driven by temperature differences and the rotation of the Earth. Glaciers, and even the Earth's mantle, are fluid.

Fluid mechanics is also fundamental to the design of aeroplanes. As long ago as 1738 Daniel Bernoulli, who was born into a family of mathematicians, understood that air flowing over a curved surface, such as the wing of an airplane would be, caused lift. It is also crucial in the design of ships, submarines, harbours and waves, and in the mixing of chemicals. All these are governed by the same laws. Also, since human beings are about 90 per cent liquid, so too are the flows through our vessels and cells.

But all these systems and the calculations related to them can be upset by the devil of fluid dynamics - turbulence.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Science: It's Always a Fluid Situation


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?