Biotechnology and the Challenge to Arms Control

By Chyba, Christopher F. | Arms Control Today, October 2006 | Go to article overview

Biotechnology and the Challenge to Arms Control


Chyba, Christopher F., Arms Control Today


Advances in biotechnology pose grave challenges to arms control for the coming decades. The increasing capabilities of the biological sciences and the global spread of the underlying technologies raise the prospect of misuse of these technologies by small groups or individuals with the necessary technical competence. The challenges lie both in the mismatch between the rapid pace of technological change and the comparative sluggishness of multilateral negotiation and ratification, as well as the questionable suitability of monitoring and inspections to a widely available, small-scale technology.

But this is not a counsel for despair. Rather, this international and human-security dilemma should serve as a spur to construct an appropriate web of prevention and response that allows the world to benefit from this technology while minimizing its dangers.

There is now a well-known list of recent experiments conducted by legitimate researchers that illustrate the dangers inherent in modern biological research and development.1 One such experiment was the synthesis of the polio virus at the State University of New York (SUNY) using readily purchased chemical supplies.2 Therefore, even if the World Health Organization succeeds in its important task of eradicating polio worldwide, the virus could still be reconstituted in laboratories throughout the world. Another experimental signpost was work at the Australian National University involving genetic modifications of the mousepox virus, a smallpox-analog virus that infects rodents. The researchers spliced into the mousepox DNA a gene for making a signaling protein that inhibits the mouse immune response to viruses. The unanticipated effect was to make the virus deadly both to mice that had previously been naturally immune and to those that had been vaccinated against mousepox.3 The experiment inadvertently pointed the way for attempts to make other viruses far more lethal.

These experiments illustrate the potential for misuse of work in molecular biology, immunology, and other forefront areas of research. Techniques developed, systems investigated, and manipulations performed for legitimate medical, food security, commercial, or other reasons may also show the way for extremely dangerous modifications that could cause harm to humans, animals, crops, or species in the natural world.4 Of course, a dual-use hazard has accompanied technology development since the invention of fire and the domestication of the horse. In the last century, the development of nuclear technology likewise married enormous power with enormous dual-use implications. What is different about biotechnology is its exponential growth, the speed of its spread around the globe, its potential for the creation of agents that could reproduce in the natural world, and its increasing availability and utility to small groups or even individuals.

Exponential Growth

The capabilities of biotechnology have increased at exponential rates in recent years, in some ways akin to the evolution of computer power. The capabilities of computers have exploded over the past several decades because the number of transistors per computer chip-a measure of how much computation can be done in a volume of a given size-has doubled every 18 months or so. This is the famous Moore's Law, after the co-founder of Intel Corp. who first called attention to the phenomenon in 1965.5 Moore's law is the reason that a single laptop today contains more computer power than was once found in entire halls of mainframe computers.

Although biotechnology's growth began decades later than that of computers, what is striking is that the rate of increase, as measured, say, by the time required to synthesize a DNA sequence of a certain length, is as fast or even faster than Moore's law.6 Just as Moore's law led to a transition in computing from extremely expensive industrial-scale machines to laptops, iPods, and microprocessors in toys, cars, and home appliances, so is biotechnological innovation moving us to a world where manipulations or synthesis of DNA will be increasingly available to small groups of the technically competent or even individual users, should they choose to make use of it.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Biotechnology and the Challenge to Arms Control
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.