Direction-of-Motion Discrimination Is Facilitated by Visible Motion Smear

By Tong, Jianliang; Aydin, Murat et al. | Perception and Psychophysics, January 2007 | Go to article overview

Direction-of-Motion Discrimination Is Facilitated by Visible Motion Smear


Tong, Jianliang, Aydin, Murat, Bedell, Harold E., Perception and Psychophysics


Recent evidence indicates that motion smear can provide useful information for the detection and discrimination of motion. Further, it has been shown that the perception of motion smear depends critically on the density of dots in a random-dot (RD) stimulus. Therefore, in the present experiments, the contribution of perceived motion smear to direction-of-motion discrimination was evaluated using RD targets of different densities. Thresholds for direction-of-motion discrimination and the extent of perceived motion smear were determined for RD stimuli with densities of 1, 2, and 10 dots/deg^sup 2^, presented for 200 msec at a velocity of 4, 8, or 12 deg/sec. To evaluate the contribution of information about orientation from motion smear, thresholds for orientation discrimination were measured using parallel lines with the same length as the extent of perceived smear. Despite the opportunity for increased summation as RD density increases, our results indicate that direction-of-motion discrimination worsens. Because perception of motion smear is reduced with an increase in RD density, our results are consistent with a facilitation of direction-of-motion discrimination by visible motion smear.

One of the fundamental tasks of the visual system is to decode the direction information in the retinal-image motion that results from objects that move in space. Electrophysiological investigations have disclosed that nerve cells located in striate and extrastriate cortical areas have direction-selective characteristics (Cheng, Fujita, Kanno, Miura, & Tanaka, 1995; Cornette et al., 1998; Hubel & Wiesel, 1968; Singh, Smith, & Greenlee, 2000), and it is generally assumed that the brain constructs its percept of the direction of motion from the selective responses of such neurons (Azzopardi & Cowey, 2001; Blanke, Landis, Mermoud, Spinelli, & Safran, 2003; Britten, Shadlen, Newsome, & Movshon, 1992; Salzman, Britten, & Newsome, 1990). However, debate continues as to how these cortical neurons work together to generate the perception of motion (Adelson & Movshon, 1982; Marr & Ullman, 1981; Pack, Livingstone, Duffy, & Born, 2003; Peterson, Li, & Freeman, 2004; Purushothaman & Bradley, 2005; D. W. Williams & Sekuler, 1984; Zohary, Scase, & Braddick, 1996).

Geisler (1999) hypothesized that spatial orientation information from "motion streaks" may be used by the visual system to enhance the encoding of moving targets. The visual representation of an object that moves at a sufficient velocity should be smeared, because of the visual persistence that accompanies temporal integration (Bidwell, 1899; Bowen, PoIa, & Matin, 1974; Coltheart, 1980; McDougall, 1904). This motion smear produces a streak in the orientation parallel to the direction of motion. Neurons in the primary visual cortex tuned to orientations parallel to the motion trajectory should be activated by the streak, and the output from these orientation-selective detectors could combine with that from direction-selective detectors to determine the direction of motion. Geisler, Albrecht, Crane, and Stern (2001) presented neurophysiological evidence to indicate that orientation-tuned neurons in the primary visual cortex of cat and monkey do, in fact, respond to motion streaks. A related proposal by Barlow and Olshausen (2004) suggests that the visual system uses the anisotropies of local spatial frequency power spectra that result from motion blur to analyze the direction of motion streaks.

Support for a contribution of motion streaks to the processing of visual motion is available from psychophysical experiments. Geisler (1999) reported that adaptation to a tilted grating significantly shifts the perceived direction of a bright spot that moves vertically at 10 deg/sec, but does not do the same for a spot that moves at 2.5 deg/sec. In this experiment, the moving bright spot was presented on a dark background, which, when the velocity was 10 deg/sec, would be expected to produce a noticeable extent of visible motion smear. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Direction-of-Motion Discrimination Is Facilitated by Visible Motion Smear
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.