Maximum-Likelihood Estimation of Site-Specific Mutation Rates in Human Mitochondrial DNA from Partial Phylogenetic Classification

By Rosset, Saharon; Wells, R. Spencer et al. | Genetics, November 2008 | Go to article overview

Maximum-Likelihood Estimation of Site-Specific Mutation Rates in Human Mitochondrial DNA from Partial Phylogenetic Classification


Rosset, Saharon, Wells, R. Spencer, Soria-Hernanz, David F., Tyler-Smith, Chris, Royyuru, Ajay K., Behar, Doron M., Genetics


ABSTRACT

The mitochondrial DNA hypervariable segment I (HVS-I) is widely used in studies of human evolutionary genetics, and therefore accurate estimates of mutation rates among nucleotide sites in this region are essential. We have developed a novel maximum-likelihood methodology for estimating site-specific mutation rates from partial phylogenetic information, such as haplogroup association. The resulting estimation problem is a generalized linear model,with a nonstandard link function. We develop inference and bias correction tools for our estimates and a hypothesis-testing approach for site independence. We demonstrate our methodology using 16,609 HVS-I samples from the Genographic Project. Our results suggest that mutation rates among nucleotide sites in HVS-I are highly variable. The 16,400-16,500 region exhibits significantly lower rates compared to other regions, suggesting potential functional constraints. Several loci identified in the literature as possible termination-associated sequences (TAS) do not yield statistically slower rates than the rest of HVS-I, casting doubt on their functional importance. Our tests do not reject the null hypothesis of independent mutation rates among nucleotide sites, supporting the use of site-independence assumption for analyzing HVS-I. Potential extensions of our methodology include its application to estimation of mutation rates in other genetic regions, like Y chromosome short tandem repeats.

(ProQuest: ... denotes formulae omitted.)

IT has long been known that different regions in the genome mutate at vastly different rates (Tamura and Nei 1993). In particular, for the mitochondrial DNA (mtDNA) two hypervariable segments (HVS) have been identified and named HVS-I and HVS-II. Even within these segments, the mutation rates of the various sites are not fixed. Tamuraand Nei (1993) showed that there is strong statistical support for a Gamma "prior" distribution of mutation rates across the mtDNA control region (which contains both HVS-I and HVS-II), with a shape parameter α = 0.1, implying many orders of magnitude difference in rates between the fastest and slowest mutating sites in these segments. Yang (1993, 1994) described methodologies for integrating this Gamma prior into maximum-likelihood (ML) phylogeny estimation.

Beyond the distribution of mutation rates, the next step is to estimate site-specific mutation and/or substitution rates. These are potentially important for understanding functionality of various genetic regions, as different functions are likely to impose selection or sequence constraints and these can be inferred through a good estimationmethodology for site-specific rates. For example, in mtDNAHVS-I several termination-associated sequences (TAS) have been identified, on the basis of sequence properties and conservation indexes. These are suspected to play a central role in regulation between replication termination and elongation of the mtDNA (Falkenberg et al. 2007). If these suspicions are well founded, we would expect strong structural constraints to apply to these sequences and hence expect them to be subject to purifying selection. Although mutationsmight occur at a similar rate to the rest of HVS-I, the resulting variants would be selected against. In the presence of selection, neutral theory assumptions made by practically every estimation approach, including ours below, are violated, but the reduced diversity due to selection is still expected to lead to lower estimates. Thus, the task of identifying (or verifying) the functionality of suchregions can be addressed in a hypothesis-testing framework for the "null" hypothesis of neutrality (under which the statistical model is valid and the rates should be "average") against the alternative of slower rates.

Numerous approaches have been developed for estimating site-specific mutation rates. One flavor (e.g., Yang 1995; Siepel and Haussler 2005) is based on analyzing the mutation rates as a Markov process and hence identifying their sequential correlation. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Maximum-Likelihood Estimation of Site-Specific Mutation Rates in Human Mitochondrial DNA from Partial Phylogenetic Classification
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.