Analysis of Nonresponse Bias in Research for Business Education

By Bartlett, James E.; Bartlett, Michelle E. et al. | The Journal of Research in Business Education, Winter 2008 | Go to article overview

Analysis of Nonresponse Bias in Research for Business Education


Bartlett, James E., Bartlett, Michelle E., Reio, Thomas G., The Journal of Research in Business Education


Abstract

This research examined the issue of nonresponse bias and how it was reported in nonexperimental quantitative research published in the Delta Pi Epsilon Journal between 1995 and 2004. Through content analysis, 85 articles consisting of 91 separate samples were examined. In 72.5% of the cases, possible nonresponse bias was not examined in the respective study. Of those who reported addressing the issue, comparing respondents to nonrespondents was the technique most frequently employed to understand possible systematic differences between the groups. Chi-square analyses did not reveal statistically significant differences between sampling technique (probability and nonprobability), response rate, and nonresponse bias checking. Response rates for the studies ranged from 12%-100%, with a mean of 62.2%. The implication for the external validity of business education research is discussed and future research is recommended.

Introduction

WHEN A RESEARCHER CONDUCTS EMPIRICAL RESEARCH, the implementation and thorough reporting of scientific methods distinguishes between mediocre and superior research. Typically, when reporting research methods, researchers include sections on participants (population/ sample), instrumentation, data collection (including followup procedures), and data analysis. When conducting quantitative research, the process should include developing research questions, selecting participants, identifying specific methods to answer the questions, selecting analysis tools, analyzing the data, and subsequently interpreting the results (Holton & Burnett, 2005). Each step in this process is vital to creating reliable and valid research results.

Figure 1 presents the conceptual framework to guide the collection of reliable and valid data in terms of defining the population, sampling, collecting data, following-up in the data collection phase, and analyzing for nonresponse bias, often an issue in survey research (Rogelberg & Luong, 1998).

Because one of the strengths of quantitative research is the ability to make statements about larger groups from smaller samples, it is crucial that the collected data are representative of the larger group. While the particular research methods are crucial to producing findings that are reliable and valid, selecting participants and collecting data are key components of getting findings that are generalizable, i. e. having external validity. Without external validity, researchers cannot appropriately make generalizations about a smaller sample to predict some attribute of the larger target population.

One of the major issues associated with sample data representativeness is possible systematic bias introduced through low response rates to surveys (Rogelberg & Luong, 1998). Not only do low response rates mean smaller sample sizes, thereby negatively influencing statistical power and increasing the size of confidence intervals around sample statistics, low response rates can also produce biased samples of respondents and reduce the perceived integrity of the survey results (Rogelberg, Conway, Sederburg, Spitzmuller, Aziz, & Knight, 2003). Thus, one goal of researchers should be to optimize survey response rates. Although there are other possible sources of systematic bias in social science research, for example, purposive sampling (Passmore & Baker, 2005), this study focuses on survey nonresponse bias. Survey nonresponse bias refers to the possible bias introduced into a study when nonrespondents differ systematically from the respondents in one or more ways. For example, when studying employee satisfaction, dissatisfied employees may be more likely to participate, thereby distorting the true level of employee satisfaction. Thus, for generalization purposes, it is important to have an understanding of how respondents and nonrespondents compare on the study's respective research variables.

Purpose and Significance of the Study

Much of the progress of the behavioral sciences has been, in part, due to the efforts of researchers to produce reliable and valid techniques to measure social variables (Linder, Murphy, & Briers, 2001).

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Analysis of Nonresponse Bias in Research for Business Education
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.