The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook

By Rauff, James V. | Mathematics and Computer Education, Winter 2009 | Go to article overview
Save to active project

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook


Rauff, James V., Mathematics and Computer Education


THE MATHEMATICS OF EGYPT, MESOPOTAMIA, CHINA, INDIA, AND ISLAM: A SOURCEBOOK Edited by Victor J. Katz Princeton University Press, 2007, 685 pp. ISBN-13: 978-0-691-11485-9

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook should be an essential addition to the college library and personal library of anyone teaching or studying the history of mathematics. This extensive book consists of five chapters, each written by a leading scholar in the field. The chapters include short histories of the development of mathematics in each of the five areas covered as well as numerous source texts in translation. Each chapter provides an extensive list of source texts and an essential reference list.

Egypt

The first chapter, written by Annette Imhausen of Mainz University, covers Egyptian mathematics. Imhausen begins with a discussion of Egyptian writing systems and the nature of the extant Egyptian mathematical texts. She then provides complete translations and commentaries of several texts, including problem texts from the Rhind Mathematical Papyrus (problems 6, 23, 26, 27, 41, 48, 50, 52, 56, 58, 65, 69, and 76), the Moscow Mathematical Papyrus (problems 10, 14, 15), and the Lahun Mathematical Fragment (UC 32160). Also presented are table texts from the Lahun Mathematical Fragments (UC 32159), the Rhind 2/N table, and the Mathematical Leather Role. Imhausen also includes translations of several administrative texts (the Reisner papyri and the Ostraca from Deir el Medina) as well as problem and table texts from the Graeco-Roman period that are not usually included in comprehensive history of mathematics texts.

Mesopotamia

The second chapter, written by Eleanor Robson of Cambridge University, examines Mesopotamian mathematics. This chapter is an exciting treasure trove of cuneiform mathematical texts, including over sixty translations that have not been published elsewhere. Robson begins with a discussion of the source texts, including the authors and contexts of the texts, and how the texts presented were chosen and translated. The translated texts are presented by time period. In the section on texts dated between 3200 and 2000 BCE, Robson presents translations of me oldest known piece of recorded mathematics (W 19408,76), the earliest known mathematical diagram containing textual data (IM 58045), and eight other ancient mathematical texts. Next, from the Old Babylonian Period (200-1600 BCE), complete translations of eight arithmetical and metrological tables are presented, including 22 mathematical problem texts containing hundreds of problems in geometry, geometrical algebra, quantity surveying, and arithmetic progressions. Rough work (diagrams and calculations by students) and reference lists (used by Babylonian teachers to construct problems) from the Old Babylonian period complete this subsection. The chapter concludes with ten texts from the later Mesopotamian time period 1400-150 BCE.

China

The third chapter, by Joseph Dauben of Herbert Lehman College CUNY, focuses on the mathematics of China. This chapter is divided into nine sections. Two preliminary sections set the context for Chinese mathematics and outline the methods and procedures of counting rods as well as the "out-in" principle used in geometric proof. A translation of the earliest known Chinese mathematical text written on 200 bamboo strips is then presented. The discussion follows with sections on the Gou-go (Pythagorean Theorem), the famous Jiu Thang suan shu (Nine Chapters on the Mathematical Art) as given and commented upon by Liu Hui, and me Sea Island Mathematical Classic. These are probably the most famous ancient Chinese mathematical texts, and it is wonderful to see them collected in one place. Yet, there are more treasures to be found here. Dauben next discusses the "Ten Classics" compiled during the Tang dynasty and presents extensive extracts from several of these. The seventh section of this chapter outlines the mathematical achievements of the Song and Yuan dynasties (960-1368 CE) including the work of Qin Jiushao, Li Zhi, Yang Hui, and Zhu Shije.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?