Please update your browser

You're using a version of Internet Explorer that isn't supported by Questia.
To get a better experience, go to one of these sites and get the latest
version of your preferred browser:

Molecular Isolation of the M Gene Suggests That a Conserved-Residue Conversion Induces the Formation of Bisexual Flowers in Cucumber Plants

By Li, Zheng; Huang, Sanwen et al. | Genetics, August 2009 | Go to article overview

Molecular Isolation of the M Gene Suggests That a Conserved-Residue Conversion Induces the Formation of Bisexual Flowers in Cucumber Plants


Li, Zheng, Huang, Sanwen, Liu, Shiqiang, Pan, Junsong, Zhang, Zhonghua, Tao, Qianyi, Shi, Qiuxiang, Jia, Zhiqi, Zhang, Weiwei, Chen, Huiming, Si, Longting, Zhu, Lihuang, Cai, Run, Genetics


ABSTRACT

Sex determination in plants involves a variety of mechanisms. Here, we report the map-based cloning and characterization of the unisexual-flower-controlling gene M. M was identified as a previously characterized putative 1-aminocyclopropane-1-carboxylic acid synthase gene, while themallele that mutated at a conserved site (Gly33Cys) lost activity in the original enzymatically active allele.

SEX determination in angiosperms, including crop plants, evolves a variety of mechanisms that involve a number of different genetic and epigenetic factors (Tanurdzic and Banks 2004). Due to its diversity in sex types and to the extensive physiological and genetic studies conducted on it, cucumber (Cucumis sativus L.; 2n = 2x = 14) is becoming a model plant for sexdetermination research (Atsmon 1968; Tsao 1988; Perl-Treves 1999; Tanurdzic and Banks 2004). In cucumber plants, male and female flowers are generally produced separately in the same individual; however, certain lines also produce bisexual flowers. Preliminary genetic studies have indicated that three major genes are responsible for sex expression and segregation in the cucumber plantF/f, M/m, and A/a. The F gene may promote femaleness, while the m gene regulates the appearance of hermaphroditic flowers on the plant. Furthermore, in combination with the homozygous recessive f gene, the recessive a gene can intensify the androecious nature (Galun 1961; Robinson et al. 1976).

Sex expression in cucumber plants can also be modified by various environmental factors and plant hormones such as ethylene (Atsmon 1968; Takahashi et al. 1983; Takahashi and Jaffe 1984; Perl-Treves 1999; Yamasaki et al. 2005). A series of studies (Kamachi et al. 1997, 2000; Trebitsh et al. 1997; Yamasaki et al. 2003a;Mibus andTatlioglu2004;Knopf andTrebitsh 2006) have been conducted to investigate the F/f gene. These studies have shown that CsACS1G, which encodes a key enzyme of the ethylene-synthesis pathway, is the candidate gene for the F/f locus. However, the M/m gene has not been studied in as much detail as the F/f gene. Here, we report the map-based cloning and characterization of the unisexual-flower-controlling M gene.

RESULTS

In the previous studies, the M/m locus was independently mapped into a genetic interval of 2.5 cM (Liu et al. 2008) and 6.1 cM (Li et al. 2008). In this study, we developed two larger segregating populations, which included 2830 F2 + BC1 (population 1983) and 2700 F2 (population 5234) individuals and constructed a highresolution collinear genetic map for the M/m locus (supporting information, Figure S1). After chromosome walking, a bacterial artificial chromosome (BAC) contig formed by two BAC clones (overlapped by an ~9.2-kb sequence) was found to be anchored to the genetic interval. The sequence of the entire contig covered an ~52-kb chromosome section, which had two complete candidate genes (Figure 1). One gene sequence showed limited similarity (68%) to a bacteriuminduced peroxidase precursor (GenBank accession no. AF155124) found in Gossypium hirsutum. However, the other gene, which was predicted to encode a 445-aminoacid protein, showed 100% sequence identity to the previously characterized CsACS2 gene, which encodes a putative 1-aminocyclopropane-1-carboxylate synthase in C. sativus (Kamachi et al. 1997).

The sequences of the entire genomic region of the putative peroxidase gene (p-CsPOD) and an ~2.0-kb 5' upstream region and 1.0-kb 3' downstream region were identical among the four parent lines. Therefore, we concluded that this putative peroxidase gene in cucumber was not the M gene.

We sequenced the entire genomic section of CsACS2 along with a 1.9-kb 5' upstream region and a 620-bp 3' downstream region from all four parental plants. These sequences revealed two types of polymorphism in the four lines used for mapping (Figure 2). First, a 5-bp insertion/deletion difference was found in the second intron between parent plants S52 and H34.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Molecular Isolation of the M Gene Suggests That a Conserved-Residue Conversion Induces the Formation of Bisexual Flowers in Cucumber Plants
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.