Using Latent Semantic Analysis and the Predication Algorithm to Improve Extraction of Meanings from a Diagnostic Corpus

By Jorge-Botana, Guillermo; Olmos, Ricardo et al. | The Spanish Journal of Psychology, July 1, 2009 | Go to article overview

Using Latent Semantic Analysis and the Predication Algorithm to Improve Extraction of Meanings from a Diagnostic Corpus


Jorge-Botana, Guillermo, Olmos, Ricardo, León, José Antonio, The Spanish Journal of Psychology


There is currently a widespread interest in indexing and extracting taxonomic information from large text collections. An example is the automatic categorization of informally written medical or psychological diagnoses, followed by the extraction of epidemiological information or even terms and structures needed to formulate guiding questions as an heuristic tool for helping doctors. Vector space models have been successfully used to this end (Lee, Cimino, Zhu, Sable, Shanker, Ely & Yu, 2006; Pakhomov, Buntrock & Chute, 2006). In this study we use a computational model known as Latent Semantic Analysis (LSA) on a diagnostic corpus with the aim of retrieving definitions (in the form of lists of semantic neighbors) of common structures it contains (e.g. "storm phobia", "dog phobia") or less common structures that might be formed by logical combinations of categories and diagnostic symptoms (e.g. "gun personality" or "germ personality"). In the quest to bring definitions into line with the meaning of structures and make them in some way representative, various problems commonly arise while recovering content using vector space models. We propose some approaches which bypass these problems, such as Kintsch's (2001) predication algorithm and some corrections to the way lists of neighbors are obtained, which have already been tested on semantic spaces in a non-specific domain (Jorge- Botana, León, Olmos & Hassan-Montero, under review). The results support the idea that the predication algorithm may also be useful for extracting more precise meanings of certain structures from scientific corpora, and that the introduction of some corrections based on vector length may increases its efficiency on non-representative terms.

Keywords: LSA, latent semantic analysis, predication algorithm, taxonomy, discourse evaluation, knowledge representation.

Actualmente existe un amplio interés en la indexación y extracción de información provenientes de grandes bancos de textos de índole taxonómica. Por ejemplo, la categorización automática de diagnósticos médicos o psicológicos redactados de manera informal y su consiguiente extracción de información epidemiológica o incluso en la extracción de términos y estructuras para la creación de preguntas-guía que asistan de forma heurística a los médicos en la búsqueda de información. Los modelos espacio-vectoriales han sido empleados con éxito en estos propósitos (Lee, Cimino, Zhu, Sable, Shanker, Ely, & Yu, 2006; Pakhomov, Buntrock, & Chute, 2006). En este estudio utilizamos un modelo computacional conocido como Análisis Semántico Latente (LSA) sobre un corpus diagnóstico con la motivación de recuperar definiciones (en forma de listados de vecinos semánticos) de estructuras habituales en ellos (e.g., "fobia a las tormentas", "fobia a los perros") o estructuras menos habituales, pero que pueden formarse por combinaciones lógicas de las categorías y síntomas diagnósticos (e.g., "personalidad de la pistola" o "personalidad de los gérmenes"). Para conseguir que las definiciones sean ajustadas al significado de las estructuras, y mínimamente representativas, se discuten algunos problemas que suelen surgir en la recuperación de contenidos con los modelos espacio-vectoriales, y se proponen algunas formas de evitarlos como el algoritmo de predicación de Kintsch (2001) y algunas correcciones en el modo de extraer listados de vecinos ya experimentadas sobre espacios semánticos de dominio general (Jorge-Botana, León, Olmos & Hassan-Montero, in review). Los resultados apoyan la idea de que el algoritmo de predicación puede ser también útil para extraer acepciones más precisas de ciertas estructuras en corpus científicos y que la introducción de algunas correcciones en base a la longitud de vector puede aumentar su eficacia ante términos poco representativos.

Palabras clave: LSA, análisis de la semántica latente, algoritmo de predicación, taxonomía, evaluación del discurso, representación del conocimiento.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Using Latent Semantic Analysis and the Predication Algorithm to Improve Extraction of Meanings from a Diagnostic Corpus
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.