Motivating Taylor Polynomials Via the Binomial Theorem

By Dobbs, David E. | Mathematics and Computer Education, Fall 2010 | Go to article overview
Save to active project

Motivating Taylor Polynomials Via the Binomial Theorem

Dobbs, David E., Mathematics and Computer Education

(ProQuest: ... denotes formulae omitted.)


The material of this note can find classroom use when students are studying Taylor polynomials in a Calculus or Elementary Analysis course. Taylor polynomials play an important role in calculus and its applications. For instance, it was shown in [3, Theorem 2] that Taylor polynomials can arise naturally in a differential equations course when one seeks polynomial approximations to power series solutions of certain initial value problems by using the method of undetermined coefficients. That paper was motivated by an example in a calculus reform textbook [1, Example 14, pp. 587-588]. One calculus textbook that is widely used today motivates the introduction of the nth Taylor polynomial as the polynomial of degree at most ? that gives the "best approximation" (in a certain sense) to a given infinitely differentiable function [4, p. 254] and, later, as a partial sum of the Taylor series of the given function [4, p. 607] . The main purpose of the present note is to motivate the supplement of the study of Taylor polynomials by means of the Binomial Theorem. We next explain how doing so in the typical calculus course would have at least three advantages over the other strategies that were described above.

First, our proposed method uses a tool that is already familiar, as the Binomial Theorem is typically used early in a calculus course to prove the formula for the derivative of x^sup n^, as in [4, p. 184]. Second, our method reinforces the standard rules for differentiating sums or constant multiples of differentiable functions, which are generally covered shortly after the derivative of x^sup n^, as in [4, pp. 186-187]. Third, our method does not need time-consuming calculations of n01 derivatives. Thus, in regard to the third point, this note contributes to the view expressed in [2] that the Taylor polynomials/series of the most useful functions can often be obtained without the explicit calculations of higher derivatives of the kind that are found in [4, pp. 610-612].


We will show how the Binomial Theorem, ... leads to a proof that any nth degree polynomial function, f(x)-a^sub n^x^sup n^+a^sub n-1^x^sup n-1^+ ... + a^sub 0^, can be expressed as ..., which happens to be (the definition of) the ? * Taylor polynomial of f (at x^sub 0^). The proof given below is thus, in effect, a discovery activity that can lead to the definition of the Taylor polynomials/series for any sufficiently/infinitely differentiable function.

Let us begin with the special case f(x) = x^sup n^, for some positive integer n. As in [2, Example 1 (b)], the key is to rewrite x as the sum x^sub 0^ +(x-x^sub 0^) . Then, raising to the n* power and applying the Binomial Theorem, we have

Next, observe that the factor n(n - 1)(n - 2) ... (n - i + 1)(x^sub 0^)^sup n-i^ is the same as f^sup (i)^(x^sub 0^) for me particular function f(x) = x^sup n^.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Motivating Taylor Polynomials Via the Binomial Theorem


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?