Saving Energy in Historic Buildings: Balancing Efficiency and Value

By Cluver, John H.; Randall, Brad | Planning for Higher Education, January-March 2012 | Go to article overview

Saving Energy in Historic Buildings: Balancing Efficiency and Value


Cluver, John H., Randall, Brad, Planning for Higher Education


Energy modeling and life-cycle costing can help identify simple steps to make a historic building more energy efficient addressing both preservation and sustainability concerns.

This article originally appeared in vol. 41, no. 1, of the APT Bulletin, the journal of the Association for Preservation Technology International. APT is a cross-disciplinary membership organization dedicated to promoting the best technology for conserving historic structures and their settings, including sustainable preservation. More information is available at www.apti.org.

By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic integrity and character. The other challenge is to find those improvements that, in the quest to save energy (and, by extension, money), do not in the long run cost more than they save. There are an increasing number of "sustainable solutions" in the marketplace today, but not all are good investments, provide tangible benefits, or are appropriate approaches for historic buildings. Often common sense, trained historic and/or aesthetic judgment, and the studies and assurances of those marketing the solutions are used to determine what interventions are appropriate, In addition, practical and objective analysis tools are needed in the process, and that is the benefit of including energy modeling and life-cycle costing in assessing potential changes. These calculation tools can help all of those involved in a project to understand which solutions truly offer energy and operating-cost savings.

Energy Modeling

The use of computers to simulate annual energy consumption began as a result of the energy crisis in the 1970s. After the United States Department of Energy (DOE) was created by President Jimmy Carter, algorithms were developed to simulate the annual energy consumption of a building. These calculations were refined and further developed over the years, with the DOE-2 simulation algorithms gaining wide acceptance in the industry throughout the 1990s. Currently, use of these energy-modeling tools has become standard for any project that is pursuing Leadership in Energy and Environmental Design (LEED) certification from the United States Green Building Council. There are many energy-modeling software programs in use today, including Energy Plus, developed jointly by the University of Illinois and the Lawrence Berkeley National Laboratory.1

The basic concept of the energy model is to virtually create (or, in the case of preservation, recreate) a building, delineating not only its physical form but also other performance and usage variables. The simulation process includes a virtual model of the building geometry, the building materials and their characteristics, and the types of mechanical systems and lighting, along with other systems that may consume energy. The patterns of the occupants and their activity levels are added to the virtual model, and finally the weather-data files that reflect the particular locale are referenced for a complete hour-by-hour simulation of a typical meteorological year.2

Depending on the size of the building, creating this baseline model can be a process that takes 40 hours for a small, straightforward building, such as a suburban office building, to hundreds of hours for a large, complex edifice, such as a monumental campus building. Regardless of project size, the process is typically the same, although larger buildings tend to leverage the effort and cost of the model to greater effect since the improvements can produce larger energy savings. Once the baseline information has been entered and an existing-conditions model created, it is then possible to calculate the building's current energy-use footprint and to track what percentage of that consumption can be attributed to each of the building's components.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Saving Energy in Historic Buildings: Balancing Efficiency and Value
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.