Population Forecasts for Bangladesh, Using a Bayesian Methodology

By Mahsin, Md; Hossain, Syed Shahadat | Journal of Health Population and Nutrition, December 2012 | Go to article overview

Population Forecasts for Bangladesh, Using a Bayesian Methodology


Mahsin, Md, Hossain, Syed Shahadat, Journal of Health Population and Nutrition


ABSTRACT

Population projection for many developing countries could be quite a challenging task for the demographers mostly due to lack of availability of enough reliable data. The objective of this paper is to present an overview of the existing methods for population forecasting and to propose an alternative based on the Bayesian statistics, combining the formality of inference. The analysis has been made using Markov Chain Monte Carlo (MCMC) technique for Bayesian methodology available with the software WinBUGS. Convergence diagnostic techniques available with the WinBUGS software have been applied to ensure the convergence of the chains necessary for the implementation of MCMC. The Bayesian approach allows for the use of observed data and expert judgements by means of appropriate priors, and a more realistic population forecasts, along with associated uncertainty, has been possible.

Key words: Cohort component Method, Monte Carlo error; Gompertz model; Highest posterior density; Logistic model; Markov Chain Monte Carlo; Non-linear regression model; Population projection; WinBUGS

(ProQuest: ... denotes formulae omitted.)

INTRODUCTION

A widely-used method of forecasting the age- and sex-specific population for future years, in which the initial population is stratified by age and sex and projections, is generated by application of survival ratios and birth rates, followed by an additive adjustment for net migration. To get this information, the behaviour of the related variables is analyzed based on the past data by statisticians, and then inferences are drawn from the analysis to make forecasts of the desired variable. At present, there exist two major paradigms in statistics, namely conventional (frequentist) and Bayesian statistics for the purpose of data analysis. Use of Bayesian methodology in the field of data analysis is comparatively new and has found massive support in the last two decades from the experts belonging to various disciplines. Probably, the main reason behind the increasing support is its flexibility and generality that allows it to deal with the complex situations. Besides, Bayesian method is typically preferred over classical approach in parameter estimation because of the intractable form of the likelihood function (1).

There are a number of methodologies used for population projections. One of the most popular methods is cohort component method which is based on the estimates about the future levels of fertility, mortality, sex composition, migration, and other parameters. Many studies have examined the relative performance of simple mathematical models, extrapolation based on time-series and cohort-component models of population forecasting. Most have found that constant growth mathematical models or standard time-series models of population growth are as least accurate as cohor component models (2-4).

The present study is not intended to assess the relative accuracy of various projection models. Rather, it only aims to investigate the usefulness of cohort component method in making the population projection for Bangladesh, using Bayesian approach. Bayesian analysis has been applied in cohort component model for providing a neat and transparent way of estimation. It provides probabilistic point estimates of the parameters, along with the highest posterior density interval (HPD) or Bayesian credible interval. Bayesian credible interval is a measure of uncertainty, and it is based on statistical theory and data on error distributions that provide an explicit estimate of the probability that a given range will contain the future population. This approach develops statistical prediction intervals to accompany population forecasts (5-7). Prediction intervals will provide extremely valuable information to data-users and will improve the quality of decisionmaking, based on population forecasts.

LITERATURE REVIEW

A cohort component strategy of population projection is based on the logic of a general population- component methodology which examines separately the components of population change, fertility, mortality, and net migration. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Population Forecasts for Bangladesh, Using a Bayesian Methodology
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.