Apoptosis and Necrosis: Two Types of Cell Death in Alcoholic Liver Disease

By Nanji, Amin A; Hiller-Sturmhofel, Susanne | Alcohol Health & Research World, January 1, 1997 | Go to article overview
Save to active project

Apoptosis and Necrosis: Two Types of Cell Death in Alcoholic Liver Disease

Nanji, Amin A, Hiller-Sturmhofel, Susanne, Alcohol Health & Research World

Heavy alcohol consumption over long periods of time can result in severe liver damage, including death of liver cells (i.e., hepatocytes). Two mechanismsapoptosis and necrosis-can contribute to hepatocyte death. In apoptosis, the affected cell actively participates in the cell death process, whereas in necrosis the cell death occurs in response to adverse conditions in the cell's environment. Numerous factors that may contribute to the initiation of hepatocyte apoptosis are affected by alcohol consumption. These factors include the enzyme cytochrome P450 2E1 (i.e., CYP2E1), small molecules (i.e., cytokines) involved in cell communication, oxidative stress, and changes in iron metabolism. Similarly, alcohol consumption can influence several factors believed to be involved in hepatocyte necrosis, including depletion of the energy-storing molecule adenosine-triphosphate, reduced oxygen levels (i.e., hypoxia) in the liver, oxidative stress, and bacterial molecules called endotoxins. KEY WORDS: alcoholic liver disorder; necrosis; cytolysis; hepatocyte; cytochrome P450; oxidation-reduction; iron; metabolic disorder; ATP (adenosine triphosphate); hypoxia; endotoxins; biochemical mechanism; pathogenesis; literature review

Many people who drink heavily over extended periods of time (i.e., several years) develop increasingly severe liver damage, including fatty liver, alcoholic hepatitis, and alcoholic cirrhosis. Fatty liver is caused by the accumulation of fat in the liver. Alcoholic hepatitis is characterized by extensive inflammation of the liver and the destruction of liver cells (i.e., hepatocytes). Moreover, scar tissue begins to form, replacing healthy liver tissue. In alcoholic cirrhosis, scarring and cell death progress further, resulting in distortion of the internal structure of the liver and, subsequently, in severe functional impairment and secondary failure of other organs, such as the kidney. These multiple complications can lead to the patient's death. By investigating the mechanisms underlying alcohol's deleterious effects on the liver, researchers hope to ultimately develop new diagnostic and therapeutic approaches to prevent these often fatal consequences of alcohol consumption.

Much recent research has focused on the mechanisms that contribute to hepatocyte death at the cellular level. Two processes play a role in hepatocyte destructionapoptosis and necrosis. This article briefly reviews the differences between these two processes and speculates on some of their underlying mechanisms. The article also discusses how heavy alcohol consumption may be associated with the mechanisms that promote these processes.


Although the ultimate results of apoptosis and necrosis are the same (i.e., death of the affected cells), the two processes differ significantly. In apoptosis, the affected cells actively participate by activating a cascade of biochemical reactions that result in cell death. Accordingly, apoptosis has been called cell suicide (e.g., Rosser and Gores 1995).' In necrosis, however, cell death occurs because of adverse conditions or changes in the cell's environment. Thus, necrosis can be viewed as the consequence of a "biological accident" that leads to the death of an "innocent victim" (Rosser and Gores 1995).

Characteristic differences also exist in both the structure and the metabolic processes of cells that undergo apoptosis or necrosis (see figure, p. 325) (Rosser and Gores 1995). When a cell undergoes apoptosis, the entire cell, including the nucleus, separates into numerous fragments (i.e., apoptotic bodies). Simultaneously, the genetic material (i.e., DNA) of apoptotic cells breaks into a characteristic pattern of pieces of varying sizes. During the breakup of the cell, the cell continues to produce proteins and adenosine triphosphate (ATP), a molecule that is required for most of the cell's energy-consuming metabolic processes and which is essential for cell functioning.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Apoptosis and Necrosis: Two Types of Cell Death in Alcoholic Liver Disease


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?