Optical Mineralogy in a Modern Earth Sciences Curriculum

By Reinhardt, Jurgen | Journal of Geoscience Education, January 2004 | Go to article overview

Optical Mineralogy in a Modern Earth Sciences Curriculum


Reinhardt, Jurgen, Journal of Geoscience Education


ABSTRACT

Optical mineralogy is a subject firmly integrated into geoscience programs that offer mineralogy and petrology modules. Polarized-light microscopy remains a powerful and cost-effective analytical method, both at the educational and the professional level. It is the ideal analytical tool for the teaching laboratory. Virtually any petrographic work that does not specifically require electron-microscope-scale analysis involves an optical microscope, whether in conjunction with other analytical equipment, or not. However, changes in the perspectives of geoscience education and the necessity to accommodate students with interdisciplinary interests alongside those who opt for a classic geology degree create a need for an optical mineralogy course that is concise, but still meets the demands of subsequent course modules that build on it. There is a range of resources that we can make use of to maintain reasonably high levels of theoretical and practical skills in polarized-light microscopy, such as application-focused lab materials and practice-oriented teaching with a strong interactive component, as well as computer-based teaching aids.

INTRODUCTION

Polarized-light microscopy is of potential interest to any science that is concerned with crystalline materials (geology, mineralogy, materials science, biology, forensic science, to name the most obvious ones). It is traditionally taught as a mineralogy module, even though optical crystallography makes no distinction between natural minerals and synthetic crystalline materials. This article emphasizes geoscience aspects, simply because that is still the main field of application of polarized-light microscopy. Bloss (1999) aptly outlines the significance of mineral optics for geoscientists with his statement "The polarizing light microscope remains the premier tool for rapidly identifying the minerals and mineral reactions that occur in petrographic thin sections of rocks". However, it must be kept in mind that the use of this analytical tool is by no means restricted to petrography, or even geoscience.

What organisms are for biology, what chemical elements and their compounds are for the chemist, earth materials are for geoscientists (if we, for the purpose of clarity, restrict the term "geoscience" or "earth science" to subjects concerned with the solid earth, including unconsolidated sediments). There is a clear and indisputable demand on geoscientists to have a fundamental understanding of earth materials, irrespective of one's preference for basic research or for applied aspects of geoscience. The fact that earth materials, with few exceptions (such as melts, fluids, glasses, and organic substance), are composed of minerals underlines the significance of mineral science education for any aspiring geoscientist. The characterization of rocks and minerals remains a basic objective of geoscience education.

We have means to identify minerals on the basis of chemical composition (e.g., electron microprobe), or structure (e.g., X-ray diffraction), or both. Optical mineralogy employs specific physical properties that reflect both composition and structure. These are optical properties in the strict sense (refractive indices, color, birefringence, optic class, optic sign, optic axial angle), but also morphological-structural characteristics (form, habit, cleavage, twinning) and the relation between the two (sign of elongation, extinction behavior). I will restrict myself here to the discussion of transmitted-light microscopy, even though much of what is stated would apply to reflected-light microscopy as well. However, reflected-light microscopy is a more specialized subject commonly taught in conjunction with ore deposits, and is not necessarily part of a standard geoscience education program.

OPTICAL MINERALOGY: STAPLE DIET OR LUXURY SIDE DISH?

For many decades, optical mineralogy has been a core subject in most earth sciences departments.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Optical Mineralogy in a Modern Earth Sciences Curriculum
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.