If Rocks Could Talk. .

By Shimizu, Nobu | Oceanus, January 1, 2004 | Go to article overview
Save to active project

If Rocks Could Talk. .

Shimizu, Nobu, Oceanus

The ion microprobe extracts hidden clues about our planet's history and evolution

Every rock on Earth contains a clock, a thermometer, and a barometer. Inside all rocks are elements, or isotopes of elements, called "natural tracers." By examining the presence, proportion, and distribution of natural tracers within rocks, we can reveal the conditions under which the rocks formed. They can tell us when the rocks formed (clocks), how fast they cooled and how they crystallized (thermometers), and the temperatures and pressures they experienced at their creation (barometers).

Just as radioactive tracers are used to understand the dynamics of chemical reactions, natural tracers in rocks can be used to help decipher the whens, wheres, and hows of the complex geological processes that create and maintain our planet. With the right tools, we can extract long-dormant, hidden information about Earth's inner workings from rocks.

The Ion Microprobe Facility at Woods Hole Oceanographic Institution is just such a tool. With it, we can peer far back in time and deep into the Earth. To understand processes that form new oceanic crust, for example, we have used the WHOI ion microprobe to study ancient rocks from the crust and underlying mantle, which have been thrust up and exposed on land (in formations known as ophiolite massifs). And we have compared those with rocks from active mid-ocean ridges on the seafloor.

We can also peer into rocks from the surface to incredible depths-almost 450 kilometers down-by probing mineral inclusions in some diamonds formed under pressures at great depth. (Inclusions are minute foreign bodies enclosed within the mass of another mineral.)

Extracting information from rocks

The ion microprobe offers great advantages over previous methods to glean natural tracer information out of rocks. Before, scientists had to break apart sample rocks and extract minerals containing specific tracers. The purified minerals were then chemically processed, and the amounts or types of tracers were determined using various instruments.

It is a painstaking and time-consuming process, and something important is destroyed in the process of mineral extraction and purification: the textural relationships in which mineral crystals occur in the rock. Rock texture is significant because it reflects the dynamic conditions under which minerals crystallized, and it presents a geologic framework within which to interpret the tracer information.

For example, if a rock forms while conditions around it are changing, the minerals in the rock will show different textures or grain sizes depending on the conditions. This information is lost in traditional processing, but retained with ion microprobe analysis because the rock is not broken up. With the ion microprobe, we can look at the composition of very small samples and identify components in situ, even over distances only micrometers apart.

From electron beams to ion beams

The first tools that allowed analysis of a sample's composition without chemically processing it were earlier electron-beam microprobes. These machines generated electron beams and focused and directed them at a rock sample. The electrons hitting a sample caused the production of X-rays, and measuring the X-ray spectra allowed us to determine the chemical composition of the samples.

In contrast, ion microprobes use focused beams of ions (charged atoms) to bombard a sample. Ions are much heavier than electrons, and the ion beam causes the sample to eject atoms and ions, rather than just emit X-rays. When the ion beam strikes the sample, atoms and ions are "sputtered" (sprayed out) from the sample.

The ion microprobe has two basic parts: the ion-beam source, which focuses and directs microbeams of ions onto the sample; and the mass spectrometer, which measures the signal intensities (abundances) of ions ejected from the sample.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

If Rocks Could Talk. .


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?