Patenting Agriculture

Article excerpt

An intense drive to patent agricultural biotechnologies may hurt those who would benefit most: people in developing countries.

More than one million children die each year because of a chronic lack of vitamin A. Millions more suffer disease. Many of these children live in developing nations where rice is the main staple. To help solve this problem, scientists have genetically engineered a variety of rice that is rich in beta carotene, an important source of vitamin A. Dubbed golden rice because of its yellow color, it could help improve millions of lives in developing countries, as well as improve the nutrition of legions of people in developed countries. But a careful study shows that anyone wanting to produce golden rice might have to secure licenses for more than 30 groups of patents issued to separate entities.

The long-term challenge for agriculture is daunting. Earth's population is expected to rise by 50 percent over the next half century. The current agriculture system simply will not be able to feed this world. We will need another Green Revolution to provide adequate food without seriously damaging the environment. Despite recent consumer skepticism, genetically modified crops such as golden rice are one of the only ways to drive such a revolution. Many scientists say that these seeds offer a safe route to crops that are more productive, that better resist plant disease and stress, and that provide improved nutrition. Research projects offer not just golden rice but crops that are resistant to viruses and insect pests. Drought- and salt-resistant crops are possible as well. But beyond the problem of public acceptance, there is the barrier of patents on genetically modified seeds, the biotechnology techniques for creating them, and the gene sequences of plants themselves. The patent system, designed to foster innovation, may be slowing it for some of these applications.

The first Green Revolution grew from an international public research system that began in the 1940s with support from the Rockefeller Foundation and expanded to include 16 research centers, including the International Rice Research Institute (IRRI) in the Philippines and the Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), the corn and wheat research center in Mexico. These centers collaborate through the Consultative Group on International Agricultural Research (CGIAR), a consortium of donors including foundations, national governments, United Nations institutions, and the World Bank. These centers have long conducted research and breeding to develop new crop varieties, sometimes on their own and sometimes in cooperation with national agricultural research systems in developing nations. The centers evolved in a world without intellectual property rights, in which seeds and breeding procedures were free for all to use and were distributed without charge to seed and farming groups throughout th e developing world. This system increased rice yields in South and Southeast Asia by more than 80 percent and led to plant varieties that have served as parents for one-fifth of the U.S. wheat crop and more than two-thirds of the U.S. rice crop.

These research institutions are now facing increasingly pervasive ownership of intellectual property rights. Simply to conduct research, the centers must consider the risk of infringing patents. This is a situation in which the patent system has worked to encourage private research but has at the same time greatly complicated crucial applications of the new technology.

The problem goes much further than the legal scope of patents. Universities in developed nations, such as U.S. land grant universities, which are so critical to healthy U.S. agriculture and which for decades have collaborated closely with CGIAR and developing world research institutions, are themselves pursuing intellectual property rights. As a result, they may refocus their research away from developing-world needs. …