Governing the Genome : WHICH GENETIC MODIFICATIONS SHOULD BE ENCOURAGED AND WHICH OUTLAWED? DEEP DIVISIONS EXIST EVEN AMONG ETHICAL SCIENTISTS AND INFORMED ACTIVISTS

Article excerpt

The telephone rings, and it's Mercy Viana, a press officer at the White House, responding to a query about President George W. Bush's Council on Bioethics, the creation of which was announced during the President's August national address on stem-cell policy. Asked when it will be formed, Viana replies, "We don't comment on timetables." Asked about the process by which the members of the council will be selected, Viana replies, "We don't comment on process."

Against the backdrop of war, the withholding of information about an emerging advisory council seems of little moment. Still, there may be some value in noting that the President's new council will not only advise on stem cells but also "consider all of the medical and ethical ramifications of biomedical innovation." In the era of the sequenced human genome, advances in cloning technology and ongoing experimentation with human genetic engineering, this is no small matter.

Indeed, while the debates over genetic "biomedical innovation" have not yet reached a status worthy of the metaphorical invocation of war, the battle has begun. Preceding a House of Representatives vote in July to ban human cloning, including the cloning of embryos for research, University of Chicago bioethicist Leon Kass publicly endorsed the ban as a means "to seize the initiative and to gain some control of the biotechnical project," which he, and others, believe to be the "eugenic redesign of future generations." The one known fact about the President's bioethics council is that Leon Kass has been appointed as its chair.

Is Kass correct in his view? A little more than a decade after the launch of the Human Genome Project, five and a half years since the appearance of the cloned sheep Dolly and sixteen months after the completion of a draft sequence of the human genome's 3 billion bits of DNA, are we headed, as Kass perceives it, toward "the soft dehumanizations of well-meaning but hubristic biotechnical 're-creationism'"--a prospect that he compares to "the cruel dehumanizations of Nazi and Soviet tyranny"?

A random survey of recent newspaper headlines gives some cause for concern. "Eggs May Be Fertilized Without Sperm," "Britain's First 'Designer Baby' to Be Born Soon" and "Fertility Ethics Authority Approves Sex Selection" are just a sampling of recent stories that tell of the accelerating conjunction of genetics and the fertility clinic, the site where the initial battle over the human genomic future will be waged. The gee-whiz science story here (and it's not a small one) is that we are nearing the point where we will unravel one of the great mysteries: How does a single fertilized egg cell become a human being? How does the genome of that first single cell and all the cells that follow "know" precisely how and when to turn on and off the genetic code so that a baby is formed and develops into adulthood? The molecular and cellular answers are beginning to come into view.

But along with that view comes a sense of the changes it might demand in our conceptions of who we are and, more daunting, the opportunities it might present to alter who we are. Deepening the anxieties generated by these advances is the reality that no one, not even the most advanced scientist, knows at this point how far-reaching or how limited the potential for genetic engineering of the human will turn out to be.

"Biology will become an engine of transformation of our society," writes Nobelist and Cal Tech president David Baltimore in a preface to the published human genome sequence. "Instead of guessing about how we differ one from another, we will understand and be able to tailor our life experiences to our inheritance. We will also be able, to some extent, to control that inheritance." In these three sentences, Baltimore expresses why genomic knowledge threatens to take us to the brink of social chaos. The detailed knowledge of our genomes--all 3 billion bits of DNA, which include all our genetic material with its genetic certainties, numerous genetic probabilities and its predicted "load" of five to ten potentially lethal genes carried by each of us--means that a genetic reordering of our individual lives and our society is coming in the workplace, in the classroom, in our courts, in our coupling and in our children. …