The Nature of Concepts: Evolution, Structure, and Representation

The Nature of Concepts: Evolution, Structure, and Representation

The Nature of Concepts: Evolution, Structure, and Representation

The Nature of Concepts: Evolution, Structure, and Representation


The Nature of Concepts examines a central issue for all the main disciplines in cognitive science: how the human mind creates and passes on to other human minds a concept. An excellent cross-disciplinary collection with contribution including Steven Pinker, Andy Clarke and Henry Plotkin.


Philip Van Loocke

This is a book about concepts—about their structure and its relationship with the structure of the external world. A central issue is how concepts are represented in the brain of living systems. In order to cope with its environment every living system must categorize “things” or “events” into classes that provoke similar reactions. A simple living system may categorize its environment into things to approach versus things to avoid, or into things to eat and things to mate with. These are concepts. But the word “concept” is not confined to such categories; concepts can be abstract (e.g. justice), mathematical (e.g. a square), linguistic (e.g. a verb), scientific (e.g. a mammal) or even ad hoc (e.g. things to eat on a diet). As this book shows the concept of “concepts” is very broad indeed.

Concepts are represented in physical systems which exist in a larger physical world. A minimum condition for a system to possess concepts is for there to be a coherence between the operation part of the system and the external world. As soon as it is recognized that such coherences occur it is meaningful to try to formulate a theory about concepts.

The law-like nature of the human physical, biological or social environment sometimes gives rise to fairly well-demarcated structures. In such cases, developing “classical” categories can be useful. Examples frequently mentioned are “mother”, “bachelor”, “odd number”, etc. All exemplars of such a category must share a set of necessary and sufficient conditions. During the last two decades, another type of concepts has been put forward. Prototype models assert that concepts are organized around one or more prototypes. Categories have graded degrees of membership, and the relations between instances of a category can be described as a family resemblance structure. The most famous instance of such a category, due to Wittgenstein (1953), is “game”. Though “good” members of the category have characteristic features, these features are not defining. In many domains of the human environment, underlying laws are obscured by the complexities inherent in these domains. As chaos theory has demonstrated, even simple laws may lead to remarkable complexities when several degrees of freedom interact. Further, objects are cluttered in ways that testify to the myriad of contingent historical processes that led to their creation and preservation. In such cases, a cognitive system at best can construct prototype categories

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.