Godel's Proof

Godel's Proof

Godel's Proof

Godel's Proof

Synopsis

In 1931 the mathematical logician Kurt Godel published a revolutionary paper that challenged certain basic assumptions underpinning mathematics and logic. A colleague of Albert Einstein, his theorem proved that mathematics was partly based on propositions not provable within the mathematical system and had radical implications that have echoed throughout many fields. A gripping combination of science and accessibility, Godel¿¿"s Proof by Nagel and Newman is for both mathematicians and the idly curious, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.

Excerpt

In 1931 there appeared in a German scientific periodical a relatively short paper with the forbidding title “Uber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme” (“On Formally Undecidable Propositions of Principia Mathematica and Related Systems”). Its author was Kurt Gödel, then a young mathematician of 25 at the University of Vienna and since 1938 a permanent member of the Institute for Advanced Study at Princeton. The paper is a milestone in the history of logic and mathematics. When Harvard University awarded Gödel an honorary degree in 1952, the citation described the work as one of the most important advances in logic in modern times.

At the time of its appearance, however, neither the title of Gödel’s paper nor its content was intelligible to most mathematicians. The Principia Mathematica mentioned in the title is the monumental three-volume treatise by Alfred North Whitehead and Bertrand Russell on mathematical logic and the foundations of

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.